Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / tests /test_config.py
mccaly's picture
Upload 660 files
b13b124
import glob
import os
from os.path import dirname, exists, isdir, join, relpath
from mmcv import Config
from torch import nn
from mmseg.models import build_segmentor
def _get_config_directory():
"""Find the predefined segmentor config directory."""
try:
# Assume we are running in the source mmsegmentation repo
repo_dpath = dirname(dirname(__file__))
except NameError:
# For IPython development when this __file__ is not defined
import mmseg
repo_dpath = dirname(dirname(mmseg.__file__))
config_dpath = join(repo_dpath, 'configs')
if not exists(config_dpath):
raise Exception('Cannot find config path')
return config_dpath
def test_config_build_segmentor():
"""Test that all segmentation models defined in the configs can be
initialized."""
config_dpath = _get_config_directory()
print('Found config_dpath = {!r}'.format(config_dpath))
config_fpaths = []
# one config each sub folder
for sub_folder in os.listdir(config_dpath):
if isdir(sub_folder):
config_fpaths.append(
list(glob.glob(join(config_dpath, sub_folder, '*.py')))[0])
config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1]
config_names = [relpath(p, config_dpath) for p in config_fpaths]
print('Using {} config files'.format(len(config_names)))
for config_fname in config_names:
config_fpath = join(config_dpath, config_fname)
config_mod = Config.fromfile(config_fpath)
config_mod.model
print('Building segmentor, config_fpath = {!r}'.format(config_fpath))
# Remove pretrained keys to allow for testing in an offline environment
if 'pretrained' in config_mod.model:
config_mod.model['pretrained'] = None
print('building {}'.format(config_fname))
segmentor = build_segmentor(config_mod.model)
assert segmentor is not None
head_config = config_mod.model['decode_head']
_check_decode_head(head_config, segmentor.decode_head)
def test_config_data_pipeline():
"""Test whether the data pipeline is valid and can process corner cases.
CommandLine:
xdoctest -m tests/test_config.py test_config_build_data_pipeline
"""
from mmcv import Config
from mmseg.datasets.pipelines import Compose
import numpy as np
config_dpath = _get_config_directory()
print('Found config_dpath = {!r}'.format(config_dpath))
import glob
config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py')))
config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1]
config_names = [relpath(p, config_dpath) for p in config_fpaths]
print('Using {} config files'.format(len(config_names)))
for config_fname in config_names:
config_fpath = join(config_dpath, config_fname)
print(
'Building data pipeline, config_fpath = {!r}'.format(config_fpath))
config_mod = Config.fromfile(config_fpath)
# remove loading pipeline
load_img_pipeline = config_mod.train_pipeline.pop(0)
to_float32 = load_img_pipeline.get('to_float32', False)
config_mod.train_pipeline.pop(0)
config_mod.test_pipeline.pop(0)
train_pipeline = Compose(config_mod.train_pipeline)
test_pipeline = Compose(config_mod.test_pipeline)
img = np.random.randint(0, 255, size=(1024, 2048, 3), dtype=np.uint8)
if to_float32:
img = img.astype(np.float32)
seg = np.random.randint(0, 255, size=(1024, 2048, 1), dtype=np.uint8)
results = dict(
filename='test_img.png',
ori_filename='test_img.png',
img=img,
img_shape=img.shape,
ori_shape=img.shape,
gt_semantic_seg=seg)
results['seg_fields'] = ['gt_semantic_seg']
print('Test training data pipeline: \n{!r}'.format(train_pipeline))
output_results = train_pipeline(results)
assert output_results is not None
results = dict(
filename='test_img.png',
ori_filename='test_img.png',
img=img,
img_shape=img.shape,
ori_shape=img.shape,
)
print('Test testing data pipeline: \n{!r}'.format(test_pipeline))
output_results = test_pipeline(results)
assert output_results is not None
def _check_decode_head(decode_head_cfg, decode_head):
if isinstance(decode_head_cfg, list):
assert isinstance(decode_head, nn.ModuleList)
assert len(decode_head_cfg) == len(decode_head)
num_heads = len(decode_head)
for i in range(num_heads):
_check_decode_head(decode_head_cfg[i], decode_head[i])
return
# check consistency between head_config and roi_head
assert decode_head_cfg['type'] == decode_head.__class__.__name__
assert decode_head_cfg['type'] == decode_head.__class__.__name__
in_channels = decode_head_cfg.in_channels
input_transform = decode_head.input_transform
assert input_transform in ['resize_concat', 'multiple_select', None]
if input_transform is not None:
assert isinstance(in_channels, (list, tuple))
assert isinstance(decode_head.in_index, (list, tuple))
assert len(in_channels) == len(decode_head.in_index)
elif input_transform == 'resize_concat':
assert sum(in_channels) == decode_head.in_channels
else:
assert isinstance(in_channels, int)
assert in_channels == decode_head.in_channels
assert isinstance(decode_head.in_index, int)
if decode_head_cfg['type'] == 'PointHead':
assert decode_head_cfg.channels+decode_head_cfg.num_classes == \
decode_head.fc_seg.in_channels
assert decode_head.fc_seg.out_channels == decode_head_cfg.num_classes
else:
assert decode_head_cfg.channels == decode_head.conv_seg.in_channels
assert decode_head.conv_seg.out_channels == decode_head_cfg.num_classes