Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / tests /test_models /test_necks.py
mccaly's picture
Upload 660 files
b13b124
import torch
from mmseg.models import FPN
def test_fpn():
in_channels = [256, 512, 1024, 2048]
inputs = [
torch.randn(1, c, 56 // 2**i, 56 // 2**i)
for i, c in enumerate(in_channels)
]
fpn = FPN(in_channels, 256, len(in_channels))
outputs = fpn(inputs)
assert outputs[0].shape == torch.Size([1, 256, 56, 56])
assert outputs[1].shape == torch.Size([1, 256, 28, 28])
assert outputs[2].shape == torch.Size([1, 256, 14, 14])
assert outputs[3].shape == torch.Size([1, 256, 7, 7])