Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
mccaly's picture
Upload 660 files
b13b124
import argparse
import gzip
import os
import os.path as osp
import tarfile
import tempfile
import mmcv
STARE_LEN = 20
TRAINING_LEN = 10
def un_gz(src, dst):
g_file = gzip.GzipFile(src)
with open(dst, 'wb+') as f:
f.write(g_file.read())
g_file.close()
def parse_args():
parser = argparse.ArgumentParser(
description='Convert STARE dataset to mmsegmentation format')
parser.add_argument('image_path', help='the path of stare-images.tar')
parser.add_argument('labels_ah', help='the path of labels-ah.tar')
parser.add_argument('labels_vk', help='the path of labels-vk.tar')
parser.add_argument('--tmp_dir', help='path of the temporary directory')
parser.add_argument('-o', '--out_dir', help='output path')
args = parser.parse_args()
return args
def main():
args = parse_args()
image_path = args.image_path
labels_ah = args.labels_ah
labels_vk = args.labels_vk
if args.out_dir is None:
out_dir = osp.join('data', 'STARE')
else:
out_dir = args.out_dir
print('Making directories...')
mmcv.mkdir_or_exist(out_dir)
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))
print('Extracting stare-images.tar...')
with tarfile.open(image_path) as f:
f.extractall(osp.join(tmp_dir, 'gz'))
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
un_gz(
osp.join(tmp_dir, 'gz', filename),
osp.join(tmp_dir, 'files',
osp.splitext(filename)[0]))
now_dir = osp.join(tmp_dir, 'files')
assert len(os.listdir(now_dir)) == STARE_LEN, \
'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'training',
osp.splitext(filename)[0] + '.png'))
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'validation',
osp.splitext(filename)[0] + '.png'))
print('Removing the temporary files...')
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))
print('Extracting labels-ah.tar...')
with tarfile.open(labels_ah) as f:
f.extractall(osp.join(tmp_dir, 'gz'))
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
un_gz(
osp.join(tmp_dir, 'gz', filename),
osp.join(tmp_dir, 'files',
osp.splitext(filename)[0]))
now_dir = osp.join(tmp_dir, 'files')
assert len(os.listdir(now_dir)) == STARE_LEN, \
'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(now_dir, filename))
# The annotation img should be divided by 128, because some of
# the annotation imgs are not standard. We should set a threshold
# to convert the nonstandard annotation imgs. The value divided by
# 128 equivalent to '1 if value >= 128 else 0'
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'training',
osp.splitext(filename)[0] + '.png'))
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(filename)[0] + '.png'))
print('Removing the temporary files...')
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))
print('Extracting labels-vk.tar...')
with tarfile.open(labels_vk) as f:
f.extractall(osp.join(tmp_dir, 'gz'))
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
un_gz(
osp.join(tmp_dir, 'gz', filename),
osp.join(tmp_dir, 'files',
osp.splitext(filename)[0]))
now_dir = osp.join(tmp_dir, 'files')
assert len(os.listdir(now_dir)) == STARE_LEN, \
'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'training',
osp.splitext(filename)[0] + '.png'))
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(filename)[0] + '.png'))
print('Removing the temporary files...')
print('Done!')
if __name__ == '__main__':
main()