import argparse import os.path as osp from functools import partial import mmcv import numpy as np from detail import Detail from PIL import Image _mapping = np.sort( np.array([ 0, 2, 259, 260, 415, 324, 9, 258, 144, 18, 19, 22, 23, 397, 25, 284, 158, 159, 416, 33, 162, 420, 454, 295, 296, 427, 44, 45, 46, 308, 59, 440, 445, 31, 232, 65, 354, 424, 68, 326, 72, 458, 34, 207, 80, 355, 85, 347, 220, 349, 360, 98, 187, 104, 105, 366, 189, 368, 113, 115 ])) _key = np.array(range(len(_mapping))).astype('uint8') def generate_labels(img_id, detail, out_dir): def _class_to_index(mask, _mapping, _key): # assert the values values = np.unique(mask) for i in range(len(values)): assert (values[i] in _mapping) index = np.digitize(mask.ravel(), _mapping, right=True) return _key[index].reshape(mask.shape) mask = Image.fromarray( _class_to_index(detail.getMask(img_id), _mapping=_mapping, _key=_key)) filename = img_id['file_name'] mask.save(osp.join(out_dir, filename.replace('jpg', 'png'))) return osp.splitext(osp.basename(filename))[0] def parse_args(): parser = argparse.ArgumentParser( description='Convert PASCAL VOC annotations to mmsegmentation format') parser.add_argument('devkit_path', help='pascal voc devkit path') parser.add_argument('json_path', help='annoation json filepath') parser.add_argument('-o', '--out_dir', help='output path') args = parser.parse_args() return args def main(): args = parse_args() devkit_path = args.devkit_path if args.out_dir is None: out_dir = osp.join(devkit_path, 'VOC2010', 'SegmentationClassContext') else: out_dir = args.out_dir json_path = args.json_path mmcv.mkdir_or_exist(out_dir) img_dir = osp.join(devkit_path, 'VOC2010', 'JPEGImages') train_detail = Detail(json_path, img_dir, 'train') train_ids = train_detail.getImgs() val_detail = Detail(json_path, img_dir, 'val') val_ids = val_detail.getImgs() mmcv.mkdir_or_exist( osp.join(devkit_path, 'VOC2010/ImageSets/SegmentationContext')) train_list = mmcv.track_progress( partial(generate_labels, detail=train_detail, out_dir=out_dir), train_ids) with open( osp.join(devkit_path, 'VOC2010/ImageSets/SegmentationContext', 'train.txt'), 'w') as f: f.writelines(line + '\n' for line in sorted(train_list)) val_list = mmcv.track_progress( partial(generate_labels, detail=val_detail, out_dir=out_dir), val_ids) with open( osp.join(devkit_path, 'VOC2010/ImageSets/SegmentationContext', 'val.txt'), 'w') as f: f.writelines(line + '\n' for line in sorted(val_list)) print('Done!') if __name__ == '__main__': main()