import logging import tempfile from unittest.mock import MagicMock, patch import mmcv.runner import pytest import torch import torch.nn as nn from mmcv.runner import obj_from_dict from torch.utils.data import DataLoader, Dataset from mmseg.apis import single_gpu_test from mmseg.core import DistEvalHook, EvalHook class ExampleDataset(Dataset): def __getitem__(self, idx): results = dict(img=torch.tensor([1]), img_metas=dict()) return results def __len__(self): return 1 class ExampleModel(nn.Module): def __init__(self): super(ExampleModel, self).__init__() self.test_cfg = None self.conv = nn.Conv2d(3, 3, 3) def forward(self, img, img_metas, test_mode=False, **kwargs): return img def train_step(self, data_batch, optimizer): loss = self.forward(**data_batch) return dict(loss=loss) def test_iter_eval_hook(): with pytest.raises(TypeError): test_dataset = ExampleModel() data_loader = [ DataLoader( test_dataset, batch_size=1, sampler=None, num_worker=0, shuffle=False) ] EvalHook(data_loader) test_dataset = ExampleDataset() test_dataset.evaluate = MagicMock(return_value=dict(test='success')) loader = DataLoader(test_dataset, batch_size=1) model = ExampleModel() data_loader = DataLoader( test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False) optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer = obj_from_dict(optim_cfg, torch.optim, dict(params=model.parameters())) # test EvalHook with tempfile.TemporaryDirectory() as tmpdir: eval_hook = EvalHook(data_loader) runner = mmcv.runner.IterBasedRunner( model=model, optimizer=optimizer, work_dir=tmpdir, logger=logging.getLogger()) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 1) test_dataset.evaluate.assert_called_with([torch.tensor([1])], logger=runner.logger) def test_epoch_eval_hook(): with pytest.raises(TypeError): test_dataset = ExampleModel() data_loader = [ DataLoader( test_dataset, batch_size=1, sampler=None, num_worker=0, shuffle=False) ] EvalHook(data_loader, by_epoch=True) test_dataset = ExampleDataset() test_dataset.evaluate = MagicMock(return_value=dict(test='success')) loader = DataLoader(test_dataset, batch_size=1) model = ExampleModel() data_loader = DataLoader( test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False) optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer = obj_from_dict(optim_cfg, torch.optim, dict(params=model.parameters())) # test EvalHook with interval with tempfile.TemporaryDirectory() as tmpdir: eval_hook = EvalHook(data_loader, by_epoch=True, interval=2) runner = mmcv.runner.EpochBasedRunner( model=model, optimizer=optimizer, work_dir=tmpdir, logger=logging.getLogger()) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 2) test_dataset.evaluate.assert_called_once_with([torch.tensor([1])], logger=runner.logger) def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): results = single_gpu_test(model, data_loader) return results @patch('mmseg.apis.multi_gpu_test', multi_gpu_test) def test_dist_eval_hook(): with pytest.raises(TypeError): test_dataset = ExampleModel() data_loader = [ DataLoader( test_dataset, batch_size=1, sampler=None, num_worker=0, shuffle=False) ] DistEvalHook(data_loader) test_dataset = ExampleDataset() test_dataset.evaluate = MagicMock(return_value=dict(test='success')) loader = DataLoader(test_dataset, batch_size=1) model = ExampleModel() data_loader = DataLoader( test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False) optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer = obj_from_dict(optim_cfg, torch.optim, dict(params=model.parameters())) # test DistEvalHook with tempfile.TemporaryDirectory() as tmpdir: eval_hook = DistEvalHook(data_loader) runner = mmcv.runner.IterBasedRunner( model=model, optimizer=optimizer, work_dir=tmpdir, logger=logging.getLogger()) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 1) test_dataset.evaluate.assert_called_with([torch.tensor([1])], logger=runner.logger) @patch('mmseg.apis.multi_gpu_test', multi_gpu_test) def test_dist_eval_hook_epoch(): with pytest.raises(TypeError): test_dataset = ExampleModel() data_loader = [ DataLoader( test_dataset, batch_size=1, sampler=None, num_worker=0, shuffle=False) ] DistEvalHook(data_loader) test_dataset = ExampleDataset() test_dataset.evaluate = MagicMock(return_value=dict(test='success')) loader = DataLoader(test_dataset, batch_size=1) model = ExampleModel() data_loader = DataLoader( test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False) optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer = obj_from_dict(optim_cfg, torch.optim, dict(params=model.parameters())) # test DistEvalHook with tempfile.TemporaryDirectory() as tmpdir: eval_hook = DistEvalHook(data_loader, by_epoch=True, interval=2) runner = mmcv.runner.EpochBasedRunner( model=model, optimizer=optimizer, work_dir=tmpdir, logger=logging.getLogger()) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 2) test_dataset.evaluate.assert_called_with([torch.tensor([1])], logger=runner.logger)