import copy import platform import random from functools import partial import numpy as np from mmcv.parallel import collate from mmcv.runner import get_dist_info from mmcv.utils import Registry, build_from_cfg from mmcv.utils.parrots_wrapper import DataLoader, PoolDataLoader from torch.utils.data import DistributedSampler if platform.system() != 'Windows': # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) hard_limit = rlimit[1] soft_limit = min(4096, hard_limit) resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) DATASETS = Registry('dataset') PIPELINES = Registry('pipeline') def _concat_dataset(cfg, default_args=None): """Build :obj:`ConcatDataset by.""" from .dataset_wrappers import ConcatDataset img_dir = cfg['img_dir'] ann_dir = cfg.get('ann_dir', None) split = cfg.get('split', None) num_img_dir = len(img_dir) if isinstance(img_dir, (list, tuple)) else 1 if ann_dir is not None: num_ann_dir = len(ann_dir) if isinstance(ann_dir, (list, tuple)) else 1 else: num_ann_dir = 0 if split is not None: num_split = len(split) if isinstance(split, (list, tuple)) else 1 else: num_split = 0 if num_img_dir > 1: assert num_img_dir == num_ann_dir or num_ann_dir == 0 assert num_img_dir == num_split or num_split == 0 else: assert num_split == num_ann_dir or num_ann_dir <= 1 num_dset = max(num_split, num_img_dir) datasets = [] for i in range(num_dset): data_cfg = copy.deepcopy(cfg) if isinstance(img_dir, (list, tuple)): data_cfg['img_dir'] = img_dir[i] if isinstance(ann_dir, (list, tuple)): data_cfg['ann_dir'] = ann_dir[i] if isinstance(split, (list, tuple)): data_cfg['split'] = split[i] datasets.append(build_dataset(data_cfg, default_args)) return ConcatDataset(datasets) def build_dataset(cfg, default_args=None): """Build datasets.""" from .dataset_wrappers import ConcatDataset, RepeatDataset if isinstance(cfg, (list, tuple)): dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) elif cfg['type'] == 'RepeatDataset': dataset = RepeatDataset( build_dataset(cfg['dataset'], default_args), cfg['times']) elif isinstance(cfg.get('img_dir'), (list, tuple)) or isinstance( cfg.get('split', None), (list, tuple)): dataset = _concat_dataset(cfg, default_args) else: dataset = build_from_cfg(cfg, DATASETS, default_args) return dataset def build_dataloader(dataset, samples_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, seed=None, drop_last=False, pin_memory=True, dataloader_type='PoolDataLoader', **kwargs): """Build PyTorch DataLoader. In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs. Args: dataset (Dataset): A PyTorch dataset. samples_per_gpu (int): Number of training samples on each GPU, i.e., batch size of each GPU. workers_per_gpu (int): How many subprocesses to use for data loading for each GPU. num_gpus (int): Number of GPUs. Only used in non-distributed training. dist (bool): Distributed training/test or not. Default: True. shuffle (bool): Whether to shuffle the data at every epoch. Default: True. seed (int | None): Seed to be used. Default: None. drop_last (bool): Whether to drop the last incomplete batch in epoch. Default: False pin_memory (bool): Whether to use pin_memory in DataLoader. Default: True dataloader_type (str): Type of dataloader. Default: 'PoolDataLoader' kwargs: any keyword argument to be used to initialize DataLoader Returns: DataLoader: A PyTorch dataloader. """ rank, world_size = get_dist_info() if dist: sampler = DistributedSampler( dataset, world_size, rank, shuffle=shuffle) shuffle = False batch_size = samples_per_gpu num_workers = workers_per_gpu else: sampler = None batch_size = num_gpus * samples_per_gpu num_workers = num_gpus * workers_per_gpu init_fn = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None assert dataloader_type in ( 'DataLoader', 'PoolDataLoader'), f'unsupported dataloader {dataloader_type}' if dataloader_type == 'PoolDataLoader': dataloader = PoolDataLoader elif dataloader_type == 'DataLoader': dataloader = DataLoader data_loader = dataloader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), pin_memory=pin_memory, shuffle=shuffle, worker_init_fn=init_fn, drop_last=drop_last, **kwargs) return data_loader def worker_init_fn(worker_id, num_workers, rank, seed): """Worker init func for dataloader. The seed of each worker equals to num_worker * rank + worker_id + user_seed Args: worker_id (int): Worker id. num_workers (int): Number of workers. rank (int): The rank of current process. seed (int): The random seed to use. """ worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed)