from abc import ABCMeta, abstractmethod import torch import torch.nn as nn from mmcv.cnn import normal_init from mmcv.runner import auto_fp16, force_fp32 from mmseg.core import build_pixel_sampler from mmseg.ops import resize from ..builder import build_loss from ..losses import accuracy class BaseDecodeHead(nn.Module, metaclass=ABCMeta): """Base class for BaseDecodeHead. Args: in_channels (int|Sequence[int]): Input channels. channels (int): Channels after modules, before conv_seg. num_classes (int): Number of classes. dropout_ratio (float): Ratio of dropout layer. Default: 0.1. conv_cfg (dict|None): Config of conv layers. Default: None. norm_cfg (dict|None): Config of norm layers. Default: None. act_cfg (dict): Config of activation layers. Default: dict(type='ReLU') in_index (int|Sequence[int]): Input feature index. Default: -1 input_transform (str|None): Transformation type of input features. Options: 'resize_concat', 'multiple_select', None. 'resize_concat': Multiple feature maps will be resize to the same size as first one and than concat together. Usually used in FCN head of HRNet. 'multiple_select': Multiple feature maps will be bundle into a list and passed into decode head. None: Only one select feature map is allowed. Default: None. loss_decode (dict): Config of decode loss. Default: dict(type='CrossEntropyLoss'). ignore_index (int | None): The label index to be ignored. When using masked BCE loss, ignore_index should be set to None. Default: 255 sampler (dict|None): The config of segmentation map sampler. Default: None. align_corners (bool): align_corners argument of F.interpolate. Default: False. """ def __init__(self, in_channels, channels, *, num_classes, dropout_ratio=0.1, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), in_index=-1, input_transform=None, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), ignore_index=255, sampler=None, align_corners=False): super(BaseDecodeHead, self).__init__() self._init_inputs(in_channels, in_index, input_transform) self.channels = channels self.num_classes = num_classes self.dropout_ratio = dropout_ratio self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.in_index = in_index self.loss_decode = build_loss(loss_decode) self.ignore_index = ignore_index self.align_corners = align_corners if sampler is not None: self.sampler = build_pixel_sampler(sampler, context=self) else: self.sampler = None self.conv_seg = nn.Conv2d(channels, num_classes, kernel_size=1) if dropout_ratio > 0: self.dropout = nn.Dropout2d(dropout_ratio) else: self.dropout = None self.fp16_enabled = False def extra_repr(self): """Extra repr.""" s = f'input_transform={self.input_transform}, ' \ f'ignore_index={self.ignore_index}, ' \ f'align_corners={self.align_corners}' return s def _init_inputs(self, in_channels, in_index, input_transform): """Check and initialize input transforms. The in_channels, in_index and input_transform must match. Specifically, when input_transform is None, only single feature map will be selected. So in_channels and in_index must be of type int. When input_transform Args: in_channels (int|Sequence[int]): Input channels. in_index (int|Sequence[int]): Input feature index. input_transform (str|None): Transformation type of input features. Options: 'resize_concat', 'multiple_select', None. 'resize_concat': Multiple feature maps will be resize to the same size as first one and than concat together. Usually used in FCN head of HRNet. 'multiple_select': Multiple feature maps will be bundle into a list and passed into decode head. None: Only one select feature map is allowed. """ if input_transform is not None: assert input_transform in ['resize_concat', 'multiple_select'] self.input_transform = input_transform self.in_index = in_index if input_transform is not None: assert isinstance(in_channels, (list, tuple)) assert isinstance(in_index, (list, tuple)) assert len(in_channels) == len(in_index) if input_transform == 'resize_concat': self.in_channels = sum(in_channels) else: self.in_channels = in_channels else: assert isinstance(in_channels, int) assert isinstance(in_index, int) self.in_channels = in_channels def init_weights(self): """Initialize weights of classification layer.""" normal_init(self.conv_seg, mean=0, std=0.01) def _transform_inputs(self, inputs): """Transform inputs for decoder. Args: inputs (list[Tensor]): List of multi-level img features. Returns: Tensor: The transformed inputs """ if self.input_transform == 'resize_concat': inputs = [inputs[i] for i in self.in_index] upsampled_inputs = [ resize( input=x, size=inputs[0].shape[2:], mode='bilinear', align_corners=self.align_corners) for x in inputs ] inputs = torch.cat(upsampled_inputs, dim=1) elif self.input_transform == 'multiple_select': inputs = [inputs[i] for i in self.in_index] else: inputs = inputs[self.in_index] return inputs @auto_fp16() @abstractmethod def forward(self, inputs): """Placeholder of forward function.""" pass def forward_train(self, inputs, img_metas, gt_semantic_seg, train_cfg): """Forward function for training. Args: inputs (list[Tensor]): List of multi-level img features. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. gt_semantic_seg (Tensor): Semantic segmentation masks used if the architecture supports semantic segmentation task. train_cfg (dict): The training config. Returns: dict[str, Tensor]: a dictionary of loss components """ seg_logits = self.forward(inputs) losses = self.losses(seg_logits, gt_semantic_seg) return losses def forward_test(self, inputs, img_metas, test_cfg): """Forward function for testing. Args: inputs (list[Tensor]): List of multi-level img features. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. test_cfg (dict): The testing config. Returns: Tensor: Output segmentation map. """ return self.forward(inputs) def cls_seg(self, feat): """Classify each pixel.""" if self.dropout is not None: feat = self.dropout(feat) output = self.conv_seg(feat) return output @force_fp32(apply_to=('seg_logit', )) def losses(self, seg_logit, seg_label): """Compute segmentation loss.""" loss = dict() seg_logit = resize( input=seg_logit, size=seg_label.shape[2:], mode='bilinear', align_corners=self.align_corners) if self.sampler is not None: seg_weight = self.sampler.sample(seg_logit, seg_label) else: seg_weight = None seg_label = seg_label.squeeze(1) loss['loss_seg'] = self.loss_decode( seg_logit, seg_label, weight=seg_weight, ignore_index=self.ignore_index) loss['acc_seg'] = accuracy(seg_logit, seg_label) return loss