{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6aac325e40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681632663859085872, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABMfoz7nJa294lvfPqlqPb97HpK+K24/P+GfCr4CLZe/cIYeP3oSnzy1AWg/Aaw2PZV1Db8pAT+/tDb8Pl9vID5psl0/m84Fv2JcsL4ezQ48MxxQPKwqBD+n5Rc/619Iv9Efc79S7sW/x7wmP7DnZb87ttU+tQo1Pbov4T7ymWs/vvrSPiG+Hr8T86O933/Qv8vUrD7QoX+/xEaqPxO7BECzr7k+bf+wv1LoSz85IyS/SZj3Ptr0y78dxPA9oKmCPt43F78dbuy/Cup/Pldk4r/RH3O/fY0lP8e8Jj+w52W/pVC2PhsMwb7ZvsU+c8fsPUc2Kr+fvwLAUvs4P6djO791iYs9idmFP8NNKz913ai/9m/UvSHeqT9vHxS/Fn3FP545Kj/5+5Y/jTFbPwa9PjxENzM/CphJPwVJcD+PcRpA0R9zv32NJT9KhsS/sOdlv4zVoT68fJY/uvv0vDHsFT8WESk/GuClPyIl3jxWTke/H6KJPcuhgb75kIA/nG0MP1LnED8iclu/jnDPPteMy7/rgUA/euZ4v3nCkb7qES8/nNSYvi/0Er9h3wQ+Flrrv1/Hhj99jSU/x7wmP7DnZb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABZt9+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhK9dPQAAAABMbuC/AAAAAGk2Zj0AAAAAhWP3PwAAAADbdKu8AAAAAGFj9D8AAAAA9TRZPQAAAADxktm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlNm7NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGlaCL4AAAAAXqTrvwAAAADD4669AAAAAMDj/D8AAAAAKrIJPgAAAAC8z/Y/AAAAAFU9aL0AAAAAgJHwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt3srUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDa/6G9AAAAAIHF+b8AAAAA8IelvAAAAAB08vk/AAAAAGbFl70AAAAAv2H9PwAAAAC/qio9AAAAAKk75b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACY2wi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAB2sJPQAAAABdy/6/AAAAAN+ZHb0AAAAArwfrPwAAAADSpuS8AAAAAIsQ9T8AAAAABoWjvQAAAABY/dy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKEsKbx3FDSMAWyUTegDjAF0lEdAsJWkqur6tXV9lChoBkdAod+QFTvRZ2gHTegDaAhHQLCXF1aW5Yp1fZQoaAZHQKD4WoCMglpoB03oA2gIR0CwmMQ+lj3FdX2UKGgGR0Cgi/hvitJWaAdN6ANoCEdAsJk13EAHV3V9lChoBkdAoOWLJp35e2gHTegDaAhHQLCcR83uNPx1fZQoaAZHQKEtFjin5zpoB03oA2gIR0Cwnmq0UoKEdX2UKGgGR0Cg+30Ouq3maAdN6ANoCEdAsKB2NtIkJXV9lChoBkdAoD2TMHKOk2gHTegDaAhHQLCg7JBgNPR1fZQoaAZHQKCL+IrvsqtoB03oA2gIR0Cwo4IOH310dX2UKGgGR0CfXLx/NJOGaAdN6ANoCEdAsKT1LteD4HV9lChoBkdAoSaMEcKgI2gHTegDaAhHQLCmuw2ETQF1fZQoaAZHQKEVzMMZxaRoB03oA2gIR0CwpzEYXO4YdX2UKGgGR0CgZqt1yNn5aAdN6ANoCEdAsKnz1kDp1XV9lChoBkdAoDVhRqGlAWgHTegDaAhHQLCsDctXgcd1fZQoaAZHQKEguLIgeRxoB03oA2gIR0Cwrqew5eZ5dX2UKGgGR0Cg8OZRCQcQaAdN6ANoCEdAsK8aOT7l73V9lChoBkdAoWH1ZmqYJGgHTegDaAhHQLCxpt8NQTF1fZQoaAZHQKCx6PEsJ6ZoB03oA2gIR0CwsxId+5OKdX2UKGgGR0ChSpU78vVWaAdN6ANoCEdAsLTMNH6MznV9lChoBkdAoWnQXsPatmgHTegDaAhHQLC1O1D0Dlp1fZQoaAZHQKChFoUSIxhoB03oA2gIR0Cwt8idz4lAdX2UKGgGR0CgQytsenyeaAdN6ANoCEdAsLmejIq9XnV9lChoBkdAoKkjZ8KG+WgHTegDaAhHQLC8Mvjfek51fZQoaAZHQKA33LIPsiVoB03oA2gIR0CwvOEEs8PndX2UKGgGR0CggGGV7hNuaAdN6ANoCEdAsL+u6kIomXV9lChoBkdAoKWgt4A0bmgHTegDaAhHQLDBGlJHy3F1fZQoaAZHQKBL2sfaHsVoB03oA2gIR0CwwsV+NLlFdX2UKGgGR0ChkR4pMHryaAdN6ANoCEdAsMM3XJ5miHV9lChoBkdAoMp+IsRQJ2gHTegDaAhHQLDFsysS00F1fZQoaAZHQKC0cZaV2RtoB03oA2gIR0Cwxx8jJMg2dX2UKGgGR0CgRNVHe7+UaAdN6ANoCEdAsMlDijtXxXV9lChoBkdAoFFxKnNxEWgHTegDaAhHQLDJ6FsHjZN1fZQoaAZHQKCN9VPN3W5oB03oA2gIR0CwzWK7iADrdX2UKGgGR0ChOC3YlIEsaAdN6ANoCEdAsM7P1uivgXV9lChoBkdAoJhaGpMpPWgHTegDaAhHQLDQc5DZ13d1fZQoaAZHQJ/fgFjd56doB03oA2gIR0Cw0OAGbCrMdX2UKGgGR0CgX4JBX0XhaAdN6ANoCEdAsNNYOLBKtnV9lChoBkdAoWjkqaw2VGgHTegDaAhHQLDUwGmk30h1fZQoaAZHQKC8UTj/+85oB03oA2gIR0Cw1nb2YfGNdX2UKGgGR0CgzemBWgezaAdN6ANoCEdAsNb3WDpTuXV9lChoBkdAn1+yteUpu2gHTegDaAhHQLDamiVjZth1fZQoaAZHQJ38fBwdbPhoB03oA2gIR0Cw3IPPcBU8dX2UKGgGR0CesQKISDh+aAdN6ANoCEdAsN43nMdLhHV9lChoBkdAoB3wa1kUbmgHTegDaAhHQLDeqywOe8R1fZQoaAZHQKBmFBDXvphoB03oA2gIR0Cw4ToybhFWdX2UKGgGR0Cd6jf5ULlWaAdN6ANoCEdAsOKwxEfDDXV9lChoBkdAoBHZoqTbFmgHTegDaAhHQLDkciLEUCd1fZQoaAZHQKELenNPgvVoB03oA2gIR0Cw5OuDaoMsdX2UKGgGR0CgZIOzQeFMaAdN6ANoCEdAsOgbSZ0CBHV9lChoBkdAnwYgMMI/q2gHTegDaAhHQLDqVKnvUjN1fZQoaAZHQKC7Aflp48loB03oA2gIR0Cw7FIDHOrydX2UKGgGR0Chbb580DU3aAdN6ANoCEdAsOzFBMSK33V9lChoBkdAoNiObAk9lmgHTegDaAhHQLDvXG3F1jl1fZQoaAZHQKFArk0aZQZoB03oA2gIR0Cw8M+MqBmPdX2UKGgGR0ChaBCYLLIQaAdN6ANoCEdAsPKPE87p3XV9lChoBkdAoTS5wuM+/2gHTegDaAhHQLDzAEgntv51fZQoaAZHQKCp7O+qR2doB03oA2gIR0Cw9bzHCGeudX2UKGgGR0CfzRZZB9kSaAdN6ANoCEdAsPfLXPJJXnV9lChoBkdAnuPkTg2qDWgHTegDaAhHQLD6WAvtdAx1fZQoaAZHQKCi0TNdJJ5oB03oA2gIR0Cw+sbqt5lfdX2UKGgGR0Cg8uw0XP7faAdN6ANoCEdAsP1GQPqcE3V9lChoBkdAnr3YbGWD6GgHTegDaAhHQLD+t+uvECN1fZQoaAZHQJ9b9lkH2RJoB03oA2gIR0CxAHJF9a2XdX2UKGgGR0CfwJsDW9UTaAdN6ANoCEdAsQDhN47ihnV9lChoBkdAoIa9SQ5my2gHTegDaAhHQLEDbUkfLcN1fZQoaAZHQJ7aHeJpFkRoB03oA2gIR0CxBRVtoBaLdX2UKGgGR0CgaLTn7pFDaAdN6ANoCEdAsQecOXmeUnV9lChoBkdAnv7dP1tfomgHTegDaAhHQLEISFyaNMp1fZQoaAZHQJ5ojh60IC5oB03oA2gIR0CxCyX0f5k9dX2UKGgGR0ChFMTw+dK/aAdN6ANoCEdAsQyLXf642HV9lChoBkdAn0fz1wo9cWgHTegDaAhHQLEOQMcIZ651fZQoaAZHQJjKvPBzmwJoB03oA2gIR0CxDrRHkLhKdX2UKGgGR0Cefv3PRiPRaAdN6ANoCEdAsREpbOeJ53V9lChoBkdAoDuJJf6XSmgHTegDaAhHQLESjgaFVT91fZQoaAZHQKAWl5qM3qBoB03oA2gIR0CxFLDP8hs7dX2UKGgGR0CdJzGd7OVxaAdN6ANoCEdAsRVUdOqNqHV9lChoBkdAm+nX0kGA1GgHTegDaAhHQLEZAAmzByl1fZQoaAZHQJ2jviuMdcVoB03oA2gIR0CxGm8inpB5dX2UKGgGR0CeIlxbB42TaAdN6ANoCEdAsRwrBzmwJXV9lChoBkdAoBQ4OlO45WgHTegDaAhHQLEcns90Rvp1fZQoaAZHQJvuiQo1DShoB03oA2gIR0CxHyv+GXXzdX2UKGgGR0Cb0gnf2saLaAdN6ANoCEdAsSCmkbgjyHV9lChoBkdAn19c9fTkQ2gHTegDaAhHQLEiZsj3VTd1fZQoaAZHQKE3MJHiFTNoB03oA2gIR0CxIwaHO8kEdX2UKGgGR0Cc8QTFl05maAdN6ANoCEdAsSbgN6PbPHV9lChoBkdAoJbj+Haew2gHTegDaAhHQLEoplrdnCh1fZQoaAZHQKCuxOerdWRoB03oA2gIR0CxKmUDhcZ+dX2UKGgGR0CgVNZOSGJvaAdN6ANoCEdAsSrWRr8BMnV9lChoBkdAn9vk56t1ZGgHTegDaAhHQLEtbph4MWp1fZQoaAZHQJ+KsQYk3S9oB03oA2gIR0CxLuS4e9zwdX2UKGgGR0CgsNOAy2x6aAdN6ANoCEdAsTCo6QvHtHV9lChoBkdAoHrZjlPrOmgHTegDaAhHQLExH04iosJ1fZQoaAZHQJwK9TFVDKJoB03oA2gIR0CxNJbbUPQOdX2UKGgGR0CgCK/etSydaAdN6ANoCEdAsTa5/MGHHnV9lChoBkdAncWDn/1g6WgHTegDaAhHQLE4XVVPva11fZQoaAZHQJ+dqHHmzSloB03oA2gIR0CxOMvthNM5dX2UKGgGR0Cb0rgq3EydaAdN6ANoCEdAsTtCzZ6D5HV9lChoBkdAmMcyTMaCMGgHTegDaAhHQLE8rJjDsMR1fZQoaAZHQJy0Okl/pdNoB03oA2gIR0CxPmiRbKRudX2UKGgGR0CW8OuhK15TaAdN6ANoCEdAsT7ZxBE8aHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}