Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +97 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.72 +/- 0.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b3cd366420dffdb388a18d4e140bb1d334ee6fd63427791d7e301031eae52c6
|
3 |
+
size 109529
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6aac326d30>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6aac329040>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"num_timesteps": 1000000,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1681638076370419558,
|
30 |
+
"learning_rate": 0.001,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASXTdPiV4dDvBWAs/SXTdPiV4dDvBWAs/SXTdPiV4dDvBWAs/SXTdPiV4dDvBWAs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAERW8v/6kYL+oUG2/eUWOPhKNGL9wMbG+xA+rv8RhOT8Clts9Ucb7vfKoNT92GRk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABJdN0+JXh0O8FYCz/UZcc9fF4sOssIiz1JdN0+JXh0O8FYCz/UZcc9fF4sOssIiz1JdN0+JXh0O8FYCz/UZcc9fF4sOssIiz1JdN0+JXh0O8FYCz/UZcc9fF4sOssIiz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.4325278 0.00373031 0.544323 ]\n [0.4325278 0.00373031 0.544323 ]\n [0.4325278 0.00373031 0.544323 ]\n [0.4325278 0.00373031 0.544323 ]]",
|
40 |
+
"desired_goal": "[[-1.4693929 -0.8775176 -0.92701197]\n [ 0.27787378 -0.59590256 -0.3460803 ]\n [-1.3364186 0.72414804 0.10721971]\n [-0.12293685 0.70960915 0.59804475]]",
|
41 |
+
"observation": "[[0.4325278 0.00373031 0.544323 0.09736219 0.00065754 0.06788787]\n [0.4325278 0.00373031 0.544323 0.09736219 0.00065754 0.06788787]\n [0.4325278 0.00373031 0.544323 0.09736219 0.00065754 0.06788787]\n [0.4325278 0.00373031 0.544323 0.09736219 0.00065754 0.06788787]]"
|
42 |
+
},
|
43 |
+
"_last_episode_starts": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
46 |
+
},
|
47 |
+
"_last_original_obs": {
|
48 |
+
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlaJNPQnxUz1tBXU9LDeEPSgV9D0iZTY+ZMqwvXxFoDxWxCQ+EkJmO/eWJzwZCIs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[ 0.05020388 0.05174354 0.05981963]\n [ 0.06455836 0.11918098 0.17812017]\n [-0.08632353 0.01956438 0.16090521]\n [ 0.00351346 0.01022886 0.27154616]]",
|
52 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
+
},
|
54 |
+
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
+
"sde_sample_freq": -1,
|
57 |
+
"_current_progress_remaining": 0.0,
|
58 |
+
"_stats_window_size": 100,
|
59 |
+
"ep_info_buffer": {
|
60 |
+
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImx9/aVGf87+UhpRSlIwBbJRLMowBdJRHQKfoh7SApa11fZQoaAZoCWgPQwiy2ZHqO7/sv5SGlFKUaBVLMmgWR0Cn6DLBsQ/YdX2UKGgGaAloD0MIqn8QyZBj1r+UhpRSlGgVSzJoFkdAp+ffcWTHKnV9lChoBmgJaA9DCBkAqrhxC+u/lIaUUpRoFUsyaBZHQKfnizWPLgZ1fZQoaAZoCWgPQwjYYrfPKnPwv5SGlFKUaBVLMmgWR0Cn6mHxri2ldX2UKGgGaAloD0MIJlKazeMw3r+UhpRSlGgVSzJoFkdAp+oNNDc/MXV9lChoBmgJaA9DCNB/D167NOe/lIaUUpRoFUsyaBZHQKfpugntv4x1fZQoaAZoCWgPQwj85ChAFMzuv5SGlFKUaBVLMmgWR0Cn6WXcQAdXdX2UKGgGaAloD0MInfF9canK7r+UhpRSlGgVSzJoFkdAp+w2+23KCHV9lChoBmgJaA9DCDy858ByhNy/lIaUUpRoFUsyaBZHQKfr4g3cYZV1fZQoaAZoCWgPQwgkD0QWaWLjv5SGlFKUaBVLMmgWR0Cn6459/jKgdX2UKGgGaAloD0MI4qyImujz+r+UhpRSlGgVSzJoFkdAp+s61Cw8n3V9lChoBmgJaA9DCDwTmiSWlOu/lIaUUpRoFUsyaBZHQKfuDC4z7/J1fZQoaAZoCWgPQwhtOgK4WbzVv5SGlFKUaBVLMmgWR0Cn7bdzwMH9dX2UKGgGaAloD0MI7nvUX68w4b+UhpRSlGgVSzJoFkdAp+1kHdGiH3V9lChoBmgJaA9DCMZP4978RvO/lIaUUpRoFUsyaBZHQKftEJbdJrd1fZQoaAZoCWgPQwhZTGw+rs3zv5SGlFKUaBVLMmgWR0Cn7yKYZ2pydX2UKGgGaAloD0MIcXFUbqIW+b+UhpRSlGgVSzJoFkdAp+7M54nndXV9lChoBmgJaA9DCILn3sMlx/O/lIaUUpRoFUsyaBZHQKfueHAymAN1fZQoaAZoCWgPQwhsCI7LuCnjv5SGlFKUaBVLMmgWR0Cn7iNVR1oydX2UKGgGaAloD0MIAJATJozm6r+UhpRSlGgVSzJoFkdAp/AiHuZ1FHV9lChoBmgJaA9DCFLuPsdHi+W/lIaUUpRoFUsyaBZHQKfvzKODJ2d1fZQoaAZoCWgPQwhrRZvj3Kbov5SGlFKUaBVLMmgWR0Cn73h0ZFXrdX2UKGgGaAloD0MIN1MhHolX9L+UhpRSlGgVSzJoFkdAp+8jrxAjZHV9lChoBmgJaA9DCKFMo8nFGO6/lIaUUpRoFUsyaBZHQKfxIjTrmhd1fZQoaAZoCWgPQwg4wMx38JPwv5SGlFKUaBVLMmgWR0Cn8MxxT850dX2UKGgGaAloD0MIX2HB/YCH47+UhpRSlGgVSzJoFkdAp/B4FC9h7XV9lChoBmgJaA9DCAq+afrswPC/lIaUUpRoFUsyaBZHQKfwIyNXHR11fZQoaAZoCWgPQwjY8V8gCJDNv5SGlFKUaBVLMmgWR0Cn8iueSSvDdX2UKGgGaAloD0MI542TwrxH67+UhpRSlGgVSzJoFkdAp/HV7BwdbXV9lChoBmgJaA9DCLK9FvTeGNO/lIaUUpRoFUsyaBZHQKfxgaUiY9h1fZQoaAZoCWgPQwjTwI9q2G/kv5SGlFKUaBVLMmgWR0Cn8SytFKChdX2UKGgGaAloD0MIavZAKzDk6b+UhpRSlGgVSzJoFkdAp/M6QaJhv3V9lChoBmgJaA9DCH13K0t0ltu/lIaUUpRoFUsyaBZHQKfy5MJx//h1fZQoaAZoCWgPQwgMeJlhoyzwv5SGlFKUaBVLMmgWR0Cn8pCYb83udX2UKGgGaAloD0MII/YJoBhZ5L+UhpRSlGgVSzJoFkdAp/I7nNgSe3V9lChoBmgJaA9DCEG8rl+wG+a/lIaUUpRoFUsyaBZHQKf0TlDF6zF1fZQoaAZoCWgPQwjxnC0gtJ7xv5SGlFKUaBVLMmgWR0Cn8/jZtelbdX2UKGgGaAloD0MI0NOAQdKn4L+UhpRSlGgVSzJoFkdAp/Okq+ajOHV9lChoBmgJaA9DCL2qs1pgD+6/lIaUUpRoFUsyaBZHQKfzUAPNFBp1fZQoaAZoCWgPQwhxOslWl9Pjv5SGlFKUaBVLMmgWR0Cn9VnUlRgrdX2UKGgGaAloD0MIjgJEwYyp9L+UhpRSlGgVSzJoFkdAp/UEUCaJAXV9lChoBmgJaA9DCEJfevtz0dO/lIaUUpRoFUsyaBZHQKf0sAc1fmd1fZQoaAZoCWgPQwg7wmnBi370v5SGlFKUaBVLMmgWR0Cn9FsnZ00WdX2UKGgGaAloD0MIqruyCwZX5b+UhpRSlGgVSzJoFkdAp/Zf/7zkIXV9lChoBmgJaA9DCF7zqs5qAei/lIaUUpRoFUsyaBZHQKf2CvugHu91fZQoaAZoCWgPQwhyNEdWfhnav5SGlFKUaBVLMmgWR0Cn9bZ4nndPdX2UKGgGaAloD0MIZ195kJ6i4b+UhpRSlGgVSzJoFkdAp/VhhH9WIXV9lChoBmgJaA9DCF3DDI0nAum/lIaUUpRoFUsyaBZHQKf3cam4y451fZQoaAZoCWgPQwhzEHS0qqXwv5SGlFKUaBVLMmgWR0Cn9xwPqcEvdX2UKGgGaAloD0MIvkupS8ax7r+UhpRSlGgVSzJoFkdAp/bH2Cdz4nV9lChoBmgJaA9DCIP26uOhL/W/lIaUUpRoFUsyaBZHQKf2cxs2vSt1fZQoaAZoCWgPQwj+0w0UeKfiv5SGlFKUaBVLMmgWR0Cn+HxJEpiJdX2UKGgGaAloD0MIFsH/VrJj3L+UhpRSlGgVSzJoFkdAp/gmtKZlWnV9lChoBmgJaA9DCJD5gEBn0uO/lIaUUpRoFUsyaBZHQKf30jRlYlp1fZQoaAZoCWgPQwhJu9HHfEDZv5SGlFKUaBVLMmgWR0Cn9316/qPfdX2UKGgGaAloD0MIBRkBFY4g5r+UhpRSlGgVSzJoFkdAp/mG8brC33V9lChoBmgJaA9DCK+T+rK0E/K/lIaUUpRoFUsyaBZHQKf5MVJL/S91fZQoaAZoCWgPQwiUiVsFMdDpv5SGlFKUaBVLMmgWR0Cn+N0lzEJjdX2UKGgGaAloD0MIStHKvcAs4b+UhpRSlGgVSzJoFkdAp/iIKlYU4HV9lChoBmgJaA9DCPN1Gf7TDeG/lIaUUpRoFUsyaBZHQKf6kNCqp991fZQoaAZoCWgPQwi/KEF/oUflv5SGlFKUaBVLMmgWR0Cn+jsfaHsUdX2UKGgGaAloD0MI5ujxe5u+8L+UhpRSlGgVSzJoFkdAp/nmxKQJX3V9lChoBmgJaA9DCHpQUIpWbuu/lIaUUpRoFUsyaBZHQKf5kdaMaS91fZQoaAZoCWgPQwj6XkNwXEbov5SGlFKUaBVLMmgWR0Cn+58c2itadX2UKGgGaAloD0MIb9bgfVUu2L+UhpRSlGgVSzJoFkdAp/tJjx0+1XV9lChoBmgJaA9DCFQfSN45lOi/lIaUUpRoFUsyaBZHQKf69QOWjXZ1fZQoaAZoCWgPQwjzqzlAMAfwv5SGlFKUaBVLMmgWR0Cn+p/8l5WzdX2UKGgGaAloD0MIyAxUxr/P0r+UhpRSlGgVSzJoFkdAp/y5JEpiJHV9lChoBmgJaA9DCE9AE2HDU+C/lIaUUpRoFUsyaBZHQKf8Y8CgbqB1fZQoaAZoCWgPQwivCP63kh3fv5SGlFKUaBVLMmgWR0Cn/A+AmReUdX2UKGgGaAloD0MIVP1K58Mz5b+UhpRSlGgVSzJoFkdAp/u6zeGfw3V9lChoBmgJaA9DCGb2eYzyzOC/lIaUUpRoFUsyaBZHQKf90KBNEgJ1fZQoaAZoCWgPQwgW9rTDX5PZv5SGlFKUaBVLMmgWR0Cn/XstkFwDdX2UKGgGaAloD0MIlIRE2saf07+UhpRSlGgVSzJoFkdAp/0m8IzFdnV9lChoBmgJaA9DCF6B6EmZVOm/lIaUUpRoFUsyaBZHQKf80ibDuSh1fZQoaAZoCWgPQwilETP7PEbav5SGlFKUaBVLMmgWR0Cn/uLb5/LDdX2UKGgGaAloD0MIvi7Df7oB6L+UhpRSlGgVSzJoFkdAp/6OAwwj+3V9lChoBmgJaA9DCJBrQ8U4f+C/lIaUUpRoFUsyaBZHQKf+Oo0ALiN1fZQoaAZoCWgPQwjtuyL438rpv5SGlFKUaBVLMmgWR0Cn/eXhGYrsdX2UKGgGaAloD0MIOXzSiQTT57+UhpRSlGgVSzJoFkdAp//pcu8K5XV9lChoBmgJaA9DCLg+rDdqBeu/lIaUUpRoFUsyaBZHQKf/k7ihnJ11fZQoaAZoCWgPQwgpr5XQXZLkv5SGlFKUaBVLMmgWR0Cn/z8yN4qxdX2UKGgGaAloD0MId9hEZi7w7L+UhpRSlGgVSzJoFkdAp/7qRnvlVHV9lChoBmgJaA9DCAa5izBFuey/lIaUUpRoFUsyaBZHQKgA+NutOmB1fZQoaAZoCWgPQwj9vKlIhTHnv5SGlFKUaBVLMmgWR0CoAKNhd+ocdX2UKGgGaAloD0MIsfuO4bGf4r+UhpRSlGgVSzJoFkdAqABPPE87p3V9lChoBmgJaA9DCL7bvHFSmNS/lIaUUpRoFUsyaBZHQKf/+nLq2Sd1fZQoaAZoCWgPQwi/mC1ZFeHkv5SGlFKUaBVLMmgWR0CoAgbD/EOzdX2UKGgGaAloD0MI2uVbH9Yb57+UhpRSlGgVSzJoFkdAqAGxVAAyVXV9lChoBmgJaA9DCIfD0sCPauS/lIaUUpRoFUsyaBZHQKgBXNeMQ3B1fZQoaAZoCWgPQwhtAaH18OXov5SGlFKUaBVLMmgWR0CoAQgY51eTdX2UKGgGaAloD0MIgsXhzK/m1b+UhpRSlGgVSzJoFkdAqAOnVqesgnV9lChoBmgJaA9DCELQ0aqW9Oi/lIaUUpRoFUsyaBZHQKgDUnKGL1p1fZQoaAZoCWgPQwjeyDzyBwPZv5SGlFKUaBVLMmgWR0CoAv8KohpydX2UKGgGaAloD0MIxAsiUtMu3r+UhpRSlGgVSzJoFkdAqAKrFsHjZXV9lChoBmgJaA9DCJPjTulg/ei/lIaUUpRoFUsyaBZHQKgFZI8QqZt1fZQoaAZoCWgPQwgLQnkfR3Pav5SGlFKUaBVLMmgWR0CoBRAOrhitdX2UKGgGaAloD0MIngsjvahd4r+UhpRSlGgVSzJoFkdAqAS8bDMvAXV9lChoBmgJaA9DCEpgcw6eie+/lIaUUpRoFUsyaBZHQKgEaETxoZh1ZS4="
|
62 |
+
},
|
63 |
+
"ep_success_buffer": {
|
64 |
+
":type:": "<class 'collections.deque'>",
|
65 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
+
},
|
67 |
+
"_n_updates": 31250,
|
68 |
+
"n_steps": 8,
|
69 |
+
"gamma": 0.95,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
+
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
+
"max_grad_norm": 0.5,
|
74 |
+
"normalize_advantage": false,
|
75 |
+
"observation_space": {
|
76 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
77 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
78 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
79 |
+
"_shape": null,
|
80 |
+
"dtype": null,
|
81 |
+
"_np_random": null
|
82 |
+
},
|
83 |
+
"action_space": {
|
84 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
85 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
86 |
+
"dtype": "float32",
|
87 |
+
"_shape": [
|
88 |
+
3
|
89 |
+
],
|
90 |
+
"low": "[-1. -1. -1.]",
|
91 |
+
"high": "[1. 1. 1.]",
|
92 |
+
"bounded_below": "[ True True True]",
|
93 |
+
"bounded_above": "[ True True True]",
|
94 |
+
"_np_random": null
|
95 |
+
},
|
96 |
+
"n_envs": 4
|
97 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eef4ccbbc523e23dad81a0b4cddddf096d1301ecf554c5581e924451e2b5b7f
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e808b14bac9e9ff878bb04a2b19fa068280eb201af8ec9f162e5c7e4bfd9372
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6aac326d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6aac329040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681638076370419558, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASXTdPiV4dDvBWAs/SXTdPiV4dDvBWAs/SXTdPiV4dDvBWAs/SXTdPiV4dDvBWAs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAERW8v/6kYL+oUG2/eUWOPhKNGL9wMbG+xA+rv8RhOT8Clts9Ucb7vfKoNT92GRk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABJdN0+JXh0O8FYCz/UZcc9fF4sOssIiz1JdN0+JXh0O8FYCz/UZcc9fF4sOssIiz1JdN0+JXh0O8FYCz/UZcc9fF4sOssIiz1JdN0+JXh0O8FYCz/UZcc9fF4sOssIiz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4325278 0.00373031 0.544323 ]\n [0.4325278 0.00373031 0.544323 ]\n [0.4325278 0.00373031 0.544323 ]\n [0.4325278 0.00373031 0.544323 ]]", "desired_goal": "[[-1.4693929 -0.8775176 -0.92701197]\n [ 0.27787378 -0.59590256 -0.3460803 ]\n [-1.3364186 0.72414804 0.10721971]\n [-0.12293685 0.70960915 0.59804475]]", "observation": "[[0.4325278 0.00373031 0.544323 0.09736219 0.00065754 0.06788787]\n [0.4325278 0.00373031 0.544323 0.09736219 0.00065754 0.06788787]\n [0.4325278 0.00373031 0.544323 0.09736219 0.00065754 0.06788787]\n [0.4325278 0.00373031 0.544323 0.09736219 0.00065754 0.06788787]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlaJNPQnxUz1tBXU9LDeEPSgV9D0iZTY+ZMqwvXxFoDxWxCQ+EkJmO/eWJzwZCIs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05020388 0.05174354 0.05981963]\n [ 0.06455836 0.11918098 0.17812017]\n [-0.08632353 0.01956438 0.16090521]\n [ 0.00351346 0.01022886 0.27154616]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImx9/aVGf87+UhpRSlIwBbJRLMowBdJRHQKfoh7SApa11fZQoaAZoCWgPQwiy2ZHqO7/sv5SGlFKUaBVLMmgWR0Cn6DLBsQ/YdX2UKGgGaAloD0MIqn8QyZBj1r+UhpRSlGgVSzJoFkdAp+ffcWTHKnV9lChoBmgJaA9DCBkAqrhxC+u/lIaUUpRoFUsyaBZHQKfnizWPLgZ1fZQoaAZoCWgPQwjYYrfPKnPwv5SGlFKUaBVLMmgWR0Cn6mHxri2ldX2UKGgGaAloD0MIJlKazeMw3r+UhpRSlGgVSzJoFkdAp+oNNDc/MXV9lChoBmgJaA9DCNB/D167NOe/lIaUUpRoFUsyaBZHQKfpugntv4x1fZQoaAZoCWgPQwj85ChAFMzuv5SGlFKUaBVLMmgWR0Cn6WXcQAdXdX2UKGgGaAloD0MInfF9canK7r+UhpRSlGgVSzJoFkdAp+w2+23KCHV9lChoBmgJaA9DCDy858ByhNy/lIaUUpRoFUsyaBZHQKfr4g3cYZV1fZQoaAZoCWgPQwgkD0QWaWLjv5SGlFKUaBVLMmgWR0Cn6459/jKgdX2UKGgGaAloD0MI4qyImujz+r+UhpRSlGgVSzJoFkdAp+s61Cw8n3V9lChoBmgJaA9DCDwTmiSWlOu/lIaUUpRoFUsyaBZHQKfuDC4z7/J1fZQoaAZoCWgPQwhtOgK4WbzVv5SGlFKUaBVLMmgWR0Cn7bdzwMH9dX2UKGgGaAloD0MI7nvUX68w4b+UhpRSlGgVSzJoFkdAp+1kHdGiH3V9lChoBmgJaA9DCMZP4978RvO/lIaUUpRoFUsyaBZHQKftEJbdJrd1fZQoaAZoCWgPQwhZTGw+rs3zv5SGlFKUaBVLMmgWR0Cn7yKYZ2pydX2UKGgGaAloD0MIcXFUbqIW+b+UhpRSlGgVSzJoFkdAp+7M54nndXV9lChoBmgJaA9DCILn3sMlx/O/lIaUUpRoFUsyaBZHQKfueHAymAN1fZQoaAZoCWgPQwhsCI7LuCnjv5SGlFKUaBVLMmgWR0Cn7iNVR1oydX2UKGgGaAloD0MIAJATJozm6r+UhpRSlGgVSzJoFkdAp/AiHuZ1FHV9lChoBmgJaA9DCFLuPsdHi+W/lIaUUpRoFUsyaBZHQKfvzKODJ2d1fZQoaAZoCWgPQwhrRZvj3Kbov5SGlFKUaBVLMmgWR0Cn73h0ZFXrdX2UKGgGaAloD0MIN1MhHolX9L+UhpRSlGgVSzJoFkdAp+8jrxAjZHV9lChoBmgJaA9DCKFMo8nFGO6/lIaUUpRoFUsyaBZHQKfxIjTrmhd1fZQoaAZoCWgPQwg4wMx38JPwv5SGlFKUaBVLMmgWR0Cn8MxxT850dX2UKGgGaAloD0MIX2HB/YCH47+UhpRSlGgVSzJoFkdAp/B4FC9h7XV9lChoBmgJaA9DCAq+afrswPC/lIaUUpRoFUsyaBZHQKfwIyNXHR11fZQoaAZoCWgPQwjY8V8gCJDNv5SGlFKUaBVLMmgWR0Cn8iueSSvDdX2UKGgGaAloD0MI542TwrxH67+UhpRSlGgVSzJoFkdAp/HV7BwdbXV9lChoBmgJaA9DCLK9FvTeGNO/lIaUUpRoFUsyaBZHQKfxgaUiY9h1fZQoaAZoCWgPQwjTwI9q2G/kv5SGlFKUaBVLMmgWR0Cn8SytFKChdX2UKGgGaAloD0MIavZAKzDk6b+UhpRSlGgVSzJoFkdAp/M6QaJhv3V9lChoBmgJaA9DCH13K0t0ltu/lIaUUpRoFUsyaBZHQKfy5MJx//h1fZQoaAZoCWgPQwgMeJlhoyzwv5SGlFKUaBVLMmgWR0Cn8pCYb83udX2UKGgGaAloD0MII/YJoBhZ5L+UhpRSlGgVSzJoFkdAp/I7nNgSe3V9lChoBmgJaA9DCEG8rl+wG+a/lIaUUpRoFUsyaBZHQKf0TlDF6zF1fZQoaAZoCWgPQwjxnC0gtJ7xv5SGlFKUaBVLMmgWR0Cn8/jZtelbdX2UKGgGaAloD0MI0NOAQdKn4L+UhpRSlGgVSzJoFkdAp/Okq+ajOHV9lChoBmgJaA9DCL2qs1pgD+6/lIaUUpRoFUsyaBZHQKfzUAPNFBp1fZQoaAZoCWgPQwhxOslWl9Pjv5SGlFKUaBVLMmgWR0Cn9VnUlRgrdX2UKGgGaAloD0MIjgJEwYyp9L+UhpRSlGgVSzJoFkdAp/UEUCaJAXV9lChoBmgJaA9DCEJfevtz0dO/lIaUUpRoFUsyaBZHQKf0sAc1fmd1fZQoaAZoCWgPQwg7wmnBi370v5SGlFKUaBVLMmgWR0Cn9FsnZ00WdX2UKGgGaAloD0MIqruyCwZX5b+UhpRSlGgVSzJoFkdAp/Zf/7zkIXV9lChoBmgJaA9DCF7zqs5qAei/lIaUUpRoFUsyaBZHQKf2CvugHu91fZQoaAZoCWgPQwhyNEdWfhnav5SGlFKUaBVLMmgWR0Cn9bZ4nndPdX2UKGgGaAloD0MIZ195kJ6i4b+UhpRSlGgVSzJoFkdAp/VhhH9WIXV9lChoBmgJaA9DCF3DDI0nAum/lIaUUpRoFUsyaBZHQKf3cam4y451fZQoaAZoCWgPQwhzEHS0qqXwv5SGlFKUaBVLMmgWR0Cn9xwPqcEvdX2UKGgGaAloD0MIvkupS8ax7r+UhpRSlGgVSzJoFkdAp/bH2Cdz4nV9lChoBmgJaA9DCIP26uOhL/W/lIaUUpRoFUsyaBZHQKf2cxs2vSt1fZQoaAZoCWgPQwj+0w0UeKfiv5SGlFKUaBVLMmgWR0Cn+HxJEpiJdX2UKGgGaAloD0MIFsH/VrJj3L+UhpRSlGgVSzJoFkdAp/gmtKZlWnV9lChoBmgJaA9DCJD5gEBn0uO/lIaUUpRoFUsyaBZHQKf30jRlYlp1fZQoaAZoCWgPQwhJu9HHfEDZv5SGlFKUaBVLMmgWR0Cn9316/qPfdX2UKGgGaAloD0MIBRkBFY4g5r+UhpRSlGgVSzJoFkdAp/mG8brC33V9lChoBmgJaA9DCK+T+rK0E/K/lIaUUpRoFUsyaBZHQKf5MVJL/S91fZQoaAZoCWgPQwiUiVsFMdDpv5SGlFKUaBVLMmgWR0Cn+N0lzEJjdX2UKGgGaAloD0MIStHKvcAs4b+UhpRSlGgVSzJoFkdAp/iIKlYU4HV9lChoBmgJaA9DCPN1Gf7TDeG/lIaUUpRoFUsyaBZHQKf6kNCqp991fZQoaAZoCWgPQwi/KEF/oUflv5SGlFKUaBVLMmgWR0Cn+jsfaHsUdX2UKGgGaAloD0MI5ujxe5u+8L+UhpRSlGgVSzJoFkdAp/nmxKQJX3V9lChoBmgJaA9DCHpQUIpWbuu/lIaUUpRoFUsyaBZHQKf5kdaMaS91fZQoaAZoCWgPQwj6XkNwXEbov5SGlFKUaBVLMmgWR0Cn+58c2itadX2UKGgGaAloD0MIb9bgfVUu2L+UhpRSlGgVSzJoFkdAp/tJjx0+1XV9lChoBmgJaA9DCFQfSN45lOi/lIaUUpRoFUsyaBZHQKf69QOWjXZ1fZQoaAZoCWgPQwjzqzlAMAfwv5SGlFKUaBVLMmgWR0Cn+p/8l5WzdX2UKGgGaAloD0MIyAxUxr/P0r+UhpRSlGgVSzJoFkdAp/y5JEpiJHV9lChoBmgJaA9DCE9AE2HDU+C/lIaUUpRoFUsyaBZHQKf8Y8CgbqB1fZQoaAZoCWgPQwivCP63kh3fv5SGlFKUaBVLMmgWR0Cn/A+AmReUdX2UKGgGaAloD0MIVP1K58Mz5b+UhpRSlGgVSzJoFkdAp/u6zeGfw3V9lChoBmgJaA9DCGb2eYzyzOC/lIaUUpRoFUsyaBZHQKf90KBNEgJ1fZQoaAZoCWgPQwgW9rTDX5PZv5SGlFKUaBVLMmgWR0Cn/XstkFwDdX2UKGgGaAloD0MIlIRE2saf07+UhpRSlGgVSzJoFkdAp/0m8IzFdnV9lChoBmgJaA9DCF6B6EmZVOm/lIaUUpRoFUsyaBZHQKf80ibDuSh1fZQoaAZoCWgPQwilETP7PEbav5SGlFKUaBVLMmgWR0Cn/uLb5/LDdX2UKGgGaAloD0MIvi7Df7oB6L+UhpRSlGgVSzJoFkdAp/6OAwwj+3V9lChoBmgJaA9DCJBrQ8U4f+C/lIaUUpRoFUsyaBZHQKf+Oo0ALiN1fZQoaAZoCWgPQwjtuyL438rpv5SGlFKUaBVLMmgWR0Cn/eXhGYrsdX2UKGgGaAloD0MIOXzSiQTT57+UhpRSlGgVSzJoFkdAp//pcu8K5XV9lChoBmgJaA9DCLg+rDdqBeu/lIaUUpRoFUsyaBZHQKf/k7ihnJ11fZQoaAZoCWgPQwgpr5XQXZLkv5SGlFKUaBVLMmgWR0Cn/z8yN4qxdX2UKGgGaAloD0MId9hEZi7w7L+UhpRSlGgVSzJoFkdAp/7qRnvlVHV9lChoBmgJaA9DCAa5izBFuey/lIaUUpRoFUsyaBZHQKgA+NutOmB1fZQoaAZoCWgPQwj9vKlIhTHnv5SGlFKUaBVLMmgWR0CoAKNhd+ocdX2UKGgGaAloD0MIsfuO4bGf4r+UhpRSlGgVSzJoFkdAqABPPE87p3V9lChoBmgJaA9DCL7bvHFSmNS/lIaUUpRoFUsyaBZHQKf/+nLq2Sd1fZQoaAZoCWgPQwi/mC1ZFeHkv5SGlFKUaBVLMmgWR0CoAgbD/EOzdX2UKGgGaAloD0MI2uVbH9Yb57+UhpRSlGgVSzJoFkdAqAGxVAAyVXV9lChoBmgJaA9DCIfD0sCPauS/lIaUUpRoFUsyaBZHQKgBXNeMQ3B1fZQoaAZoCWgPQwhtAaH18OXov5SGlFKUaBVLMmgWR0CoAQgY51eTdX2UKGgGaAloD0MIgsXhzK/m1b+UhpRSlGgVSzJoFkdAqAOnVqesgnV9lChoBmgJaA9DCELQ0aqW9Oi/lIaUUpRoFUsyaBZHQKgDUnKGL1p1fZQoaAZoCWgPQwjeyDzyBwPZv5SGlFKUaBVLMmgWR0CoAv8KohpydX2UKGgGaAloD0MIxAsiUtMu3r+UhpRSlGgVSzJoFkdAqAKrFsHjZXV9lChoBmgJaA9DCJPjTulg/ei/lIaUUpRoFUsyaBZHQKgFZI8QqZt1fZQoaAZoCWgPQwgLQnkfR3Pav5SGlFKUaBVLMmgWR0CoBRAOrhitdX2UKGgGaAloD0MIngsjvahd4r+UhpRSlGgVSzJoFkdAqAS8bDMvAXV9lChoBmgJaA9DCEpgcw6eie+/lIaUUpRoFUsyaBZHQKgEaETxoZh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.95, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (291 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.7189678332768381, "std_reward": 0.15131995540833534, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-16T10:32:20.686724"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e75ddef2cee5c61b4bce125ec288e735e50f79fdaea7b9519422afacfbd8937e
|
3 |
+
size 2381
|