mdapri's picture
my first attempt
f56d8e1
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f81465c1940>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f81465c19d0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f81465c1a60>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f81465c1af0>",
"_build": "<function ActorCriticPolicy._build at 0x7f81465c1b80>",
"forward": "<function ActorCriticPolicy.forward at 0x7f81465c1c10>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f81465c1ca0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f81465c1d30>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f81465c1dc0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f81465c1e50>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f81465c1ee0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f81465c1f70>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f8146633b10>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1677405957319850763,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKYu/L3hyqq6ClhTuqCW6rdLNb87MPa1OAAAgD8AAIA/TXZTPU5Koz/bgcI+S5/GvsMStryMAyU8AAAAAAAAAAAzq3y74dCGupswsDtz/B046XrauhZWOrYAAIA/AACAPzMDYTzDrRu6FR9AuW+FQLTiEIM76jBlOAAAgD8AAIA/AKUlPcM1NrqDtzs8UyCvNHi8J7toh8QzAACAPwAAgD8axQM99tQfuhmMiLs37Qi2UFtGuot4oDoAAIA/AACAPwDi4zwfopS73WLNPFrBpzwMg+c8+kuOvQAAgD8AAIA/DQKDvVxDXLqWwTq5syUoNvq0rDrjX1o4AACAPwAAgD+AWY094WCZunuRM7ti8JG2bHVuOjiSTzoAAIA/AACAPzM+g7zDWTC6apUvOzs+WrYsJKe5sOpZtQAAgD8AAIA/mlmIvOGQhLpf4TY68yoTtvLhijplAlO5AACAPwAAgD8zPNa8j5Y0urhYijr3KZU11e7YOmzIo7kAAIA/AACAP5qYxDziM5w+Bg59u1UHYL5W6TA9qopDvQAAAAAAAAAA2gvcPe6Wsz8u/xU/goRvvvC02D05/5A+AAAAAAAAAAAzJoY9w5EHuvRanDhJZ/wzuxOROgfStLcAAIA/AACAP6bTsj3DKVe6PvKSOyLpITZvEDy7K7iqugAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInn3lQbpgcUCUhpRSlIwBbJRNVAKMAXSUR0CSMjDdP+GXdX2UKGgGaAloD0MIZCR7hBoEZ0CUhpRSlGgVTegDaBZHQJIzdybQTmJ1fZQoaAZoCWgPQwi/fR04ZwVhQJSGlFKUaBVN6ANoFkdAkjlvHLida3V9lChoBmgJaA9DCNds5SX/mzhAlIaUUpRoFUvoaBZHQJI+BvitJWh1fZQoaAZoCWgPQwgJibSNvxRiQJSGlFKUaBVN6ANoFkdAkkCiNn5BTnV9lChoBmgJaA9DCOvm4m/77WJAlIaUUpRoFU3oA2gWR0CSRNFVT72tdX2UKGgGaAloD0MIZED2evd3QUCUhpRSlGgVS/poFkdAkkkVBY3eenV9lChoBmgJaA9DCFzII7gRtmRAlIaUUpRoFU3oA2gWR0CSTB2eg+QmdX2UKGgGaAloD0MIT7D/OjfDWkCUhpRSlGgVTegDaBZHQJJPKLcbiqB1fZQoaAZoCWgPQwgaiGUzB4JmQJSGlFKUaBVN6ANoFkdAkmTcMNMGo3V9lChoBmgJaA9DCGnIeJTKcGBAlIaUUpRoFU3oA2gWR0CScNFEAo5QdX2UKGgGaAloD0MIOxvyzwwqRECUhpRSlGgVTR8BaBZHQJJ7Gh4+r2h1fZQoaAZoCWgPQwgrwHebt5hmQJSGlFKUaBVN6ANoFkdAknvUd7v5QHV9lChoBmgJaA9DCJylZDmJe2JAlIaUUpRoFU3oA2gWR0CSfSdoWYWtdX2UKGgGaAloD0MIIJxPHSugYUCUhpRSlGgVTegDaBZHQJJ+QpG4I8h1fZQoaAZoCWgPQwhSgCiYsdpiQJSGlFKUaBVN6ANoFkdAkn8HRLK3eHV9lChoBmgJaA9DCPhT46UbJmdAlIaUUpRoFU3oA2gWR0CSgUAksz2wdX2UKGgGaAloD0MIzJcXYJ/aZECUhpRSlGgVTegDaBZHQJKEI/zJ6pp1fZQoaAZoCWgPQwiOO6WD9WliQJSGlFKUaBVN6ANoFkdAkoU9zwMH8nV9lChoBmgJaA9DCERq2sU0MmdAlIaUUpRoFU3oA2gWR0CShj22oegddX2UKGgGaAloD0MIIHpSJjU0Z0CUhpRSlGgVTegDaBZHQJKQh0knkT91fZQoaAZoCWgPQwhUkJ+NXAJcQJSGlFKUaBVN6ANoFkdAkpO5KjBVMnV9lChoBmgJaA9DCPLNNjem5WZAlIaUUpRoFU3oA2gWR0CSmjN4Z/CqdX2UKGgGaAloD0MIn6wYrg64Y0CUhpRSlGgVTegDaBZHQJKfO6f8Mux1fZQoaAZoCWgPQwjYmxiSEyBlQJSGlFKUaBVN6ANoFkdAkqK/WxyGSXV9lChoBmgJaA9DCICaWrZW0WFAlIaUUpRoFU3oA2gWR0CSpxtHxz7udX2UKGgGaAloD0MIWKzhIvckckCUhpRSlGgVTRIDaBZHQJLFluYQarF1fZQoaAZoCWgPQwjSx3xAYONwQJSGlFKUaBVNlANoFkdAksYPDLr5ZnV9lChoBmgJaA9DCGCsb2By905AlIaUUpRoFUvlaBZHQJLLncYZVGV1fZQoaAZoCWgPQwi4WFGDaZ9jQJSGlFKUaBVN6ANoFkdAktHE3bVSXXV9lChoBmgJaA9DCLKfxVIkmVtAlIaUUpRoFU3oA2gWR0CS0vCk43m3dX2UKGgGaAloD0MIuoJtxBPfYECUhpRSlGgVTegDaBZHQJLT8HhS9/V1fZQoaAZoCWgPQwgi4uZUMnVhQJSGlFKUaBVN6ANoFkdAktSfzreImHV9lChoBmgJaA9DCPPHtDYNZWJAlIaUUpRoFU3oA2gWR0CS1rLjghr4dX2UKGgGaAloD0MITMPwEbFqY0CUhpRSlGgVTegDaBZHQJLZS3azu4R1fZQoaAZoCWgPQwgwZeCAFhNhQJSGlFKUaBVN6ANoFkdAktpNld1Md3V9lChoBmgJaA9DCC9QUmABqmZAlIaUUpRoFU3oA2gWR0CS2ystkFwDdX2UKGgGaAloD0MIV7H4TWFmbkCUhpRSlGgVTQoDaBZHQJLdcLjPv8Z1fZQoaAZoCWgPQwgMsI9OXbdfQJSGlFKUaBVN6ANoFkdAkuUZSR8tw3V9lChoBmgJaA9DCAxbs5WXvlxAlIaUUpRoFU3oA2gWR0CS6CeCkGiYdX2UKGgGaAloD0MIbyu9NhvBU0CUhpRSlGgVS+loFkdAkulwWznienV9lChoBmgJaA9DCAd5PZgU/l1AlIaUUpRoFU3oA2gWR0CS8jAYHgP3dX2UKGgGaAloD0MIMA+Z8qE1YECUhpRSlGgVTegDaBZHQJL08uUUwi91fZQoaAZoCWgPQwg/O+C6YupgQJSGlFKUaBVN6ANoFkdAkxG2T1TR6XV9lChoBmgJaA9DCIW1MXbCPmdAlIaUUpRoFU3oA2gWR0CTEjAprk8zdX2UKGgGaAloD0MI1As+zckxY0CUhpRSlGgVTegDaBZHQJMYxc1O0sx1fZQoaAZoCWgPQwgNp8zNN7ljQJSGlFKUaBVN6ANoFkdAkyIrXHzYmXV9lChoBmgJaA9DCHAJwD+lcGJAlIaUUpRoFU3oA2gWR0CTI/mLLpzLdX2UKGgGaAloD0MIryKjAxKHYkCUhpRSlGgVTegDaBZHQJMlkWk8A7x1fZQoaAZoCWgPQwg1QdR9APpjQJSGlFKUaBVN6ANoFkdAkyanIEKVp3V9lChoBmgJaA9DCGe1wB4TT2xAlIaUUpRoFU2BAmgWR0CTJvxGDtgKdX2UKGgGaAloD0MIVFT9SmerYkCUhpRSlGgVTegDaBZHQJMpsLMLWqd1fZQoaAZoCWgPQwhanDHMCVtlQJSGlFKUaBVN6ANoFkdAkyxJrDZUUHV9lChoBmgJaA9DCEZ7vJAOJ2VAlIaUUpRoFU3oA2gWR0CTLjYZ2pyZdX2UKGgGaAloD0MI71aW6KzvZECUhpRSlGgVTegDaBZHQJMwIZ75VOt1fZQoaAZoCWgPQwiaYDjXMHhSQJSGlFKUaBVNGAFoFkdAkzO0w8GLUHV9lChoBmgJaA9DCHSbcK/M7zhAlIaUUpRoFUv4aBZHQJM0ZCtzS1F1fZQoaAZoCWgPQwgNHNDSFZhEQJSGlFKUaBVLxWgWR0CTNMdKdxyXdX2UKGgGaAloD0MI5Gn5gatDY0CUhpRSlGgVTegDaBZHQJM0+lpGnXN1fZQoaAZoCWgPQwiNmq+SD7liQJSGlFKUaBVN6ANoFkdAkzaQ3HaN/HV9lChoBmgJaA9DCLAcIQP5FmBAlIaUUpRoFU3oA2gWR0CTPSAJswcpdX2UKGgGaAloD0MIoffGEABBYUCUhpRSlGgVTegDaBZHQJM/n/vOQhh1fZQoaAZoCWgPQwijrN9MTBhnQJSGlFKUaBVN6ANoFkdAk2CZwGW2PXV9lChoBmgJaA9DCNuGURA8pGZAlIaUUpRoFU3oA2gWR0CTYUQtBfKIdX2UKGgGaAloD0MIQIhkyLEFG0CUhpRSlGgVS/RoFkdAk2Ja+BYms3V9lChoBmgJaA9DCJuNlZhnnFFAlIaUUpRoFUvzaBZHQJNlNIWgvlF1fZQoaAZoCWgPQwjJAiZw629wQJSGlFKUaBVNMgNoFkdAk2XrrTpgTnV9lChoBmgJaA9DCF6ezhWliGNAlIaUUpRoFU3oA2gWR0CTZv+5OJtSdX2UKGgGaAloD0MI7kEIyJcBYkCUhpRSlGgVTegDaBZHQJNsWwiaAnV1fZQoaAZoCWgPQwiAC7Jl+XBmQJSGlFKUaBVN6ANoFkdAk217lzU7S3V9lChoBmgJaA9DCJUnEHaKiGJAlIaUUpRoFU3oA2gWR0CTb2w0O3DvdX2UKGgGaAloD0MIxHx5AfY7ZUCUhpRSlGgVTegDaBZHQJN3FSKm8/V1fZQoaAZoCWgPQwiE8dO4t6hiQJSGlFKUaBVN6ANoFkdAk3mcrupjt3V9lChoBmgJaA9DCGwkCcIVU2ZAlIaUUpRoFU3oA2gWR0CTfjm5UcXFdX2UKGgGaAloD0MIbF7VWS2KY0CUhpRSlGgVTegDaBZHQJN/EEmplz51fZQoaAZoCWgPQwgzT64pEEFkQJSGlFKUaBVN6ANoFkdAk3+O0CzTnnV9lChoBmgJaA9DCBMn9zuUo2VAlIaUUpRoFU3oA2gWR0CTf9BMSK3vdX2UKGgGaAloD0MIGxL3WHqlZ0CUhpRSlGgVTegDaBZHQJOBrzg/C691fZQoaAZoCWgPQwhtc2N6wsFkQJSGlFKUaBVN6ANoFkdAk7DHgHeJpHV9lChoBmgJaA9DCIRFRZxOhV9AlIaUUpRoFU3oA2gWR0CTsVSm65G0dX2UKGgGaAloD0MIIXU7+0qyYkCUhpRSlGgVTegDaBZHQJOyMj8k2P11fZQoaAZoCWgPQwhYycfuApdkQJSGlFKUaBVN6ANoFkdAk7UCd4FA3XV9lChoBmgJaA9DCEUNpmF4i2RAlIaUUpRoFU3oA2gWR0CTtcTeO4oadX2UKGgGaAloD0MI+wRQjGxecUCUhpRSlGgVTW4CaBZHQJO2kPxx1gZ1fZQoaAZoCWgPQwj2X+emTTdoQJSGlFKUaBVN6ANoFkdAk7bWNFSbY3V9lChoBmgJaA9DCBjt8UI6sG9AlIaUUpRoFU05A2gWR0CTtwPLPldUdX2UKGgGaAloD0MIpDZxcr8tZ0CUhpRSlGgVTegDaBZHQJO7pEy+HrR1fZQoaAZoCWgPQwhcyCO4kahjQJSGlFKUaBVN6ANoFkdAk7yYD5j6N3V9lChoBmgJaA9DCB8TKc1mA3NAlIaUUpRoFU3UAmgWR0CTv41ie/YbdX2UKGgGaAloD0MIzH1yFCAeSECUhpRSlGgVS/1oFkdAk8FoDYAbQ3V9lChoBmgJaA9DCLMj1Xd+Nm5AlIaUUpRoFU0bA2gWR0CTwqL9uP3jdX2UKGgGaAloD0MIJjW0AdiIYkCUhpRSlGgVTegDaBZHQJPFKa7VawF1fZQoaAZoCWgPQwj2X+emTXllQJSGlFKUaBVN6ANoFkdAk84YqoZQ53V9lChoBmgJaA9DCAvvchFfcmJAlIaUUpRoFU3oA2gWR0CTz0D8LroodX2UKGgGaAloD0MIZ7lsdE4UaECUhpRSlGgVTegDaBZHQJPTM593KSx1fZQoaAZoCWgPQwiNRj6vePduQJSGlFKUaBVNRQFoFkdAk9QQxvegtnV9lChoBmgJaA9DCAXEJFzI5W5AlIaUUpRoFU3fAmgWR0CT2r8Djin6dX2UKGgGaAloD0MIjXxe8dSDIUCUhpRSlGgVS/VoFkdAk98kfYBeX3V9lChoBmgJaA9DCDxmoDJ+t3FAlIaUUpRoFU2dA2gWR0CT6UEBsANodX2UKGgGaAloD0MIGhnkLkJpZUCUhpRSlGgVTegDaBZHQJPpbg88s+V1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}