best_model.pt
Browse files- README.md +71 -0
- config.json +24 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: windowz_dce-022625
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# windowz_dce-022625
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Accuracy: 0.9916
|
21 |
+
- F1: 0.9914
|
22 |
+
- Iou: 0.9838
|
23 |
+
- Per Class Metrics: {0: {'f1': 0.99722, 'iou': 0.99445, 'accuracy': 0.99583}, 1: {'f1': 0.98262, 'iou': 0.96584, 'accuracy': 0.99157}, 2: {'f1': 0.752, 'iou': 0.60257, 'accuracy': 0.9957}}
|
24 |
+
- Loss: 0.0191
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_steps: 1000
|
50 |
+
- num_epochs: 100
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | | Class Metrics | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:------:|:------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|
|
56 |
+
| 0.4609 | 5.0 | 12815 | 0.9814 | {0: {'f1': 0.99753, 'iou': 0.99506, 'accuracy': 0.9963}, 1: {'f1': 0.97958, 'iou': 0.95998, 'accuracy': 0.99006}, 2: {'f1': 0.62099, 'iou': 0.45032, 'accuracy': 0.99369}} | 0.0445 |
|
57 |
+
| 0.4462 | 10.0 | 25630 | 0.9830 | {0: {'f1': 0.99759, 'iou': 0.99518, 'accuracy': 0.99639}, 1: {'f1': 0.98171, 'iou': 0.96408, 'accuracy': 0.99106}, 2: {'f1': 0.67311, 'iou': 0.50729, 'accuracy': 0.99467}} | 0.0885 |
|
58 |
+
| 0.4105 | 15.0 | 38445 | 0.9847 | {0: {'f1': 0.99756, 'iou': 0.99514, 'accuracy': 0.99635}, 1: {'f1': 0.98336, 'iou': 0.96726, 'accuracy': 0.99192}, 2: {'f1': 0.7548, 'iou': 0.60617, 'accuracy': 0.99557}} | 0.0298 |
|
59 |
+
| 0.4006 | 20.0 | 51260 | 0.9834 | {0: {'f1': 0.99716, 'iou': 0.99433, 'accuracy': 0.99574}, 1: {'f1': 0.98185, 'iou': 0.96435, 'accuracy': 0.99123}, 2: {'f1': 0.75043, 'iou': 0.60056, 'accuracy': 0.99546}} | 0.0201 |
|
60 |
+
| 0.4016 | 25.0 | 64075 | 0.9838 | {0: {'f1': 0.99722, 'iou': 0.99445, 'accuracy': 0.99583}, 1: {'f1': 0.98262, 'iou': 0.96584, 'accuracy': 0.99157}, 2: {'f1': 0.752, 'iou': 0.60257, 'accuracy': 0.9957}} | 0.0191 |
|
61 |
+
| 0.3635 | 30.0 | 76890 | 0.9849 | {0: {'f1': 0.99748, 'iou': 0.99496, 'accuracy': 0.99622}, 1: {'f1': 0.98326, 'iou': 0.96706, 'accuracy': 0.99192}, 2: {'f1': 0.78691, 'iou': 0.64868, 'accuracy': 0.99567}} | 0.0195 |
|
62 |
+
| 0.3754 | 35.0 | 89705 | 0.9822 | {0: {'f1': 0.99678, 'iou': 0.99359, 'accuracy': 0.99518}, 1: {'f1': 0.98001, 'iou': 0.96081, 'accuracy': 0.99042}, 2: {'f1': 0.77117, 'iou': 0.62757, 'accuracy': 0.9952}} | 0.0284 |
|
63 |
+
| 0.3568 | 40.0 | 102520 | 0.9827 | {0: {'f1': 0.99752, 'iou': 0.99506, 'accuracy': 0.99629}, 1: {'f1': 0.97971, 'iou': 0.96022, 'accuracy': 0.99027}, 2: {'f1': 0.73597, 'iou': 0.58224, 'accuracy': 0.99395}} | 0.0239 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.45.0
|
69 |
+
- Pytorch 2.5.1+cu124
|
70 |
+
- Datasets 2.21.0
|
71 |
+
- Tokenizers 0.20.3
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"UNETForSegmentation"
|
4 |
+
],
|
5 |
+
"dim": 224,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_size": 256,
|
8 |
+
"img_size": 128,
|
9 |
+
"intermediate_size": 1024,
|
10 |
+
"is_causal": false,
|
11 |
+
"k": 2,
|
12 |
+
"model_type": "Unet",
|
13 |
+
"n_filts": 4,
|
14 |
+
"num_attention_heads": 8,
|
15 |
+
"num_channels": 3,
|
16 |
+
"num_classes": 3,
|
17 |
+
"num_hidden_layers": 6,
|
18 |
+
"num_layers": 2,
|
19 |
+
"patch_size": 16,
|
20 |
+
"problem_type": "single_label_classification",
|
21 |
+
"t": 2,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.45.0"
|
24 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47172d6e6e7ab5abe41f935a36a81c069bd712e69d662928c8dacc1b89d114d4
|
3 |
+
size 2188724
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbfb0720a36492a7481af7922685bba771de1670ddd27fe7a8550ade1bfe5bd6
|
3 |
+
size 5240
|