File size: 2,959 Bytes
5d2bcf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: cc-by-4.0
base_model: l3cube-pune/malayalam-bert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: malayalam-bert-FakeNews-Dravidian
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# malayalam-bert-FakeNews-Dravidian
This model is a fine-tuned version of [l3cube-pune/malayalam-bert](https://huggingface.co/l3cube-pune/malayalam-bert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7928
- Accuracy: 0.7840
- Weighted f1 score: 0.7819
- Macro f1 score: 0.7818
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 score | Macro f1 score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|
| 1.0681 | 1.0 | 204 | 1.0238 | 0.4982 | 0.3313 | 0.3325 |
| 1.0077 | 2.0 | 408 | 0.9829 | 0.5031 | 0.3421 | 0.3433 |
| 0.9738 | 3.0 | 612 | 0.9529 | 0.5877 | 0.5499 | 0.5503 |
| 0.946 | 4.0 | 816 | 0.9267 | 0.6466 | 0.6401 | 0.6399 |
| 0.9204 | 5.0 | 1020 | 0.9019 | 0.7006 | 0.6877 | 0.6875 |
| 0.8961 | 6.0 | 1224 | 0.8754 | 0.7644 | 0.7629 | 0.7628 |
| 0.8715 | 7.0 | 1428 | 0.8540 | 0.7607 | 0.7544 | 0.7543 |
| 0.8485 | 8.0 | 1632 | 0.8362 | 0.7828 | 0.7789 | 0.7788 |
| 0.8323 | 9.0 | 1836 | 0.8244 | 0.7791 | 0.7749 | 0.7748 |
| 0.8182 | 10.0 | 2040 | 0.8151 | 0.7816 | 0.7773 | 0.7772 |
| 0.8063 | 11.0 | 2244 | 0.8069 | 0.7816 | 0.7792 | 0.7791 |
| 0.7973 | 12.0 | 2448 | 0.8011 | 0.7828 | 0.7799 | 0.7798 |
| 0.791 | 13.0 | 2652 | 0.7950 | 0.7853 | 0.7840 | 0.7839 |
| 0.7857 | 14.0 | 2856 | 0.7939 | 0.7816 | 0.7793 | 0.7792 |
| 0.7826 | 15.0 | 3060 | 0.7928 | 0.7840 | 0.7819 | 0.7818 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.14.1
|