mediaProcessing commited on
Commit
21627c1
·
1 Parent(s): ca81c07

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -0
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: openai/whisper-small
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - dataset_whisper
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: Transcriber-small
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: dataset_whisper
18
+ type: dataset_whisper
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 97.23577235772358
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Transcriber-small
32
+
33
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the dataset_whisper dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 3.0153
36
+ - Wer: 97.2358
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-05
56
+ - train_batch_size: 2
57
+ - eval_batch_size: 2
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 8
60
+ - total_train_batch_size: 16
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_steps: 500
64
+ - training_steps: 4000
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
70
+ | 2.6006 | 4.02 | 100 | 2.6681 | 99.9350 |
71
+ | 1.6004 | 8.04 | 200 | 2.1138 | 107.2846 |
72
+ | 1.0072 | 12.06 | 300 | 1.9609 | 129.9187 |
73
+ | 0.5229 | 16.08 | 400 | 2.0901 | 119.0894 |
74
+ | 0.2155 | 20.1 | 500 | 2.2948 | 105.9187 |
75
+ | 0.0743 | 24.12 | 600 | 2.3731 | 100.6829 |
76
+ | 0.0292 | 28.14 | 700 | 2.5375 | 118.0813 |
77
+ | 0.0169 | 32.16 | 800 | 2.5601 | 108.0650 |
78
+ | 0.0121 | 36.18 | 900 | 2.6491 | 102.7642 |
79
+ | 0.008 | 40.2 | 1000 | 2.6436 | 94.3415 |
80
+ | 0.0046 | 44.22 | 1100 | 2.7131 | 89.8211 |
81
+ | 0.0021 | 48.24 | 1200 | 2.7516 | 96.9106 |
82
+ | 0.0012 | 52.26 | 1300 | 2.7878 | 95.3496 |
83
+ | 0.0009 | 56.28 | 1400 | 2.8137 | 97.6260 |
84
+ | 0.0008 | 60.3 | 1500 | 2.8333 | 94.2439 |
85
+ | 0.0007 | 64.32 | 1600 | 2.8514 | 90.1463 |
86
+ | 0.0006 | 68.34 | 1700 | 2.8667 | 95.3821 |
87
+ | 0.0006 | 72.36 | 1800 | 2.8813 | 98.0488 |
88
+ | 0.0005 | 76.38 | 1900 | 2.8932 | 98.8618 |
89
+ | 0.0005 | 80.4 | 2000 | 2.9056 | 98.9268 |
90
+ | 0.0004 | 84.42 | 2100 | 2.9156 | 96.7805 |
91
+ | 0.0004 | 88.44 | 2200 | 2.9251 | 96.7805 |
92
+ | 0.0004 | 92.46 | 2300 | 2.9343 | 97.8211 |
93
+ | 0.0003 | 96.48 | 2400 | 2.9439 | 97.8537 |
94
+ | 0.0003 | 100.5 | 2500 | 2.9516 | 97.1057 |
95
+ | 0.0003 | 104.52 | 2600 | 2.9597 | 98.1138 |
96
+ | 0.0003 | 108.54 | 2700 | 2.9671 | 96.4228 |
97
+ | 0.0003 | 112.56 | 2800 | 2.9733 | 99.1870 |
98
+ | 0.0003 | 116.58 | 2900 | 2.9791 | 102.2764 |
99
+ | 0.0003 | 120.6 | 3000 | 2.9860 | 101.2033 |
100
+ | 0.0002 | 124.62 | 3100 | 2.9903 | 98.9919 |
101
+ | 0.0002 | 128.64 | 3200 | 2.9953 | 98.3415 |
102
+ | 0.0002 | 132.66 | 3300 | 2.9996 | 99.8699 |
103
+ | 0.0002 | 136.68 | 3400 | 3.0034 | 100.1301 |
104
+ | 0.0002 | 140.7 | 3500 | 3.0070 | 98.7317 |
105
+ | 0.0002 | 144.72 | 3600 | 3.0093 | 97.1382 |
106
+ | 0.0002 | 148.74 | 3700 | 3.0118 | 98.3740 |
107
+ | 0.0002 | 152.76 | 3800 | 3.0136 | 96.8130 |
108
+ | 0.0002 | 156.78 | 3900 | 3.0153 | 96.8780 |
109
+ | 0.0002 | 160.8 | 4000 | 3.0153 | 97.2358 |
110
+
111
+
112
+ ### Framework versions
113
+
114
+ - Transformers 4.32.0.dev0
115
+ - Pytorch 1.12.1+cu113
116
+ - Datasets 2.14.1
117
+ - Tokenizers 0.13.3