--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - dataset_whisper metrics: - wer model-index: - name: Transcriber-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: dataset_whisper type: dataset_whisper config: default split: test args: default metrics: - name: Wer type: wer value: 97.23577235772358 --- # Transcriber-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the dataset_whisper dataset. It achieves the following results on the evaluation set: - Loss: 3.0153 - Wer: 97.2358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.6006 | 4.02 | 100 | 2.6681 | 99.9350 | | 1.6004 | 8.04 | 200 | 2.1138 | 107.2846 | | 1.0072 | 12.06 | 300 | 1.9609 | 129.9187 | | 0.5229 | 16.08 | 400 | 2.0901 | 119.0894 | | 0.2155 | 20.1 | 500 | 2.2948 | 105.9187 | | 0.0743 | 24.12 | 600 | 2.3731 | 100.6829 | | 0.0292 | 28.14 | 700 | 2.5375 | 118.0813 | | 0.0169 | 32.16 | 800 | 2.5601 | 108.0650 | | 0.0121 | 36.18 | 900 | 2.6491 | 102.7642 | | 0.008 | 40.2 | 1000 | 2.6436 | 94.3415 | | 0.0046 | 44.22 | 1100 | 2.7131 | 89.8211 | | 0.0021 | 48.24 | 1200 | 2.7516 | 96.9106 | | 0.0012 | 52.26 | 1300 | 2.7878 | 95.3496 | | 0.0009 | 56.28 | 1400 | 2.8137 | 97.6260 | | 0.0008 | 60.3 | 1500 | 2.8333 | 94.2439 | | 0.0007 | 64.32 | 1600 | 2.8514 | 90.1463 | | 0.0006 | 68.34 | 1700 | 2.8667 | 95.3821 | | 0.0006 | 72.36 | 1800 | 2.8813 | 98.0488 | | 0.0005 | 76.38 | 1900 | 2.8932 | 98.8618 | | 0.0005 | 80.4 | 2000 | 2.9056 | 98.9268 | | 0.0004 | 84.42 | 2100 | 2.9156 | 96.7805 | | 0.0004 | 88.44 | 2200 | 2.9251 | 96.7805 | | 0.0004 | 92.46 | 2300 | 2.9343 | 97.8211 | | 0.0003 | 96.48 | 2400 | 2.9439 | 97.8537 | | 0.0003 | 100.5 | 2500 | 2.9516 | 97.1057 | | 0.0003 | 104.52 | 2600 | 2.9597 | 98.1138 | | 0.0003 | 108.54 | 2700 | 2.9671 | 96.4228 | | 0.0003 | 112.56 | 2800 | 2.9733 | 99.1870 | | 0.0003 | 116.58 | 2900 | 2.9791 | 102.2764 | | 0.0003 | 120.6 | 3000 | 2.9860 | 101.2033 | | 0.0002 | 124.62 | 3100 | 2.9903 | 98.9919 | | 0.0002 | 128.64 | 3200 | 2.9953 | 98.3415 | | 0.0002 | 132.66 | 3300 | 2.9996 | 99.8699 | | 0.0002 | 136.68 | 3400 | 3.0034 | 100.1301 | | 0.0002 | 140.7 | 3500 | 3.0070 | 98.7317 | | 0.0002 | 144.72 | 3600 | 3.0093 | 97.1382 | | 0.0002 | 148.74 | 3700 | 3.0118 | 98.3740 | | 0.0002 | 152.76 | 3800 | 3.0136 | 96.8130 | | 0.0002 | 156.78 | 3900 | 3.0153 | 96.8780 | | 0.0002 | 160.8 | 4000 | 3.0153 | 97.2358 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.14.1 - Tokenizers 0.13.3