File size: 5,437 Bytes
6eccc2a 4ed32d7 6eccc2a 4d50e13 54a4179 4d50e13 dd47bc1 4ed32d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
license: apache-2.0
model-index:
- name: open-llama-3b-v2-instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 38.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mediocredev/open-llama-3b-v2-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 70.24
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mediocredev/open-llama-3b-v2-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mediocredev/open-llama-3b-v2-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.96
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mediocredev/open-llama-3b-v2-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.75
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mediocredev/open-llama-3b-v2-instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mediocredev/open-llama-3b-v2-instruct
name: Open LLM Leaderboard
---
## Prerequisites
In addition to pytorch and transformers, install required packages:
```
pip install accelerate sentencepiece
```
## Usage
To use, copy the following script:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = 'mediocredev/open-llama-3b-v2-instruct'
tokenizer_id = 'mediocredev/open-llama-3b-v2-instruct'
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
pipeline = transformers.pipeline(
'text-generation',
model=model_id,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map='auto',
)
system_message = 'You are a helpful assistant, who always provide explanation.'
user_message = 'How many days are there in a leap year?'
prompt = f'### System:\n{system_message}<|endoftext|>\n### User:\n{user_message}<|endoftext|>\n### Assistant:\n'
response = pipeline(
prompt,
max_length=1000,
repetition_penalty=1.05,
)
response = response[0]['generated_text']
print(response)
# Assistant: A leap year has 366 days. It's an extra day added to the calendar every four years to account for the extra time it takes for Earth to complete one full orbit around the Sun.
```
## Limitations
mediocredev/open-llama-3b-v2-instruct is based on LLaMA 3B v2. It can struggle with factual accuracy, particularly when presented with conflicting information or nuanced topics. Its outputs are not deterministic and require critical evaluation to avoid relying solely on its assertions. Additionally, its generative capabilities, while promising, can sometimes produce factually incorrect or offensive content, necessitating careful curation and human oversight. As an evolving model, LLaMA is still under development, and its limitations in areas like bias mitigation and interpretability are being actively addressed. By using this model responsibly and being aware of its shortcomings, we can unlock its potential while mitigating its risks.
## Contact
Welcome any feedback, questions, and discussions. Feel free to reach out: [email protected]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mediocredev__open-llama-3b-v2-instruct)
| Metric |Value|
|---------------------------------|----:|
|Avg. |42.02|
|AI2 Reasoning Challenge (25-Shot)|38.48|
|HellaSwag (10-Shot) |70.24|
|MMLU (5-Shot) |39.69|
|TruthfulQA (0-shot) |37.96|
|Winogrande (5-shot) |65.75|
|GSM8k (5-shot) | 0.00|
|