medmediani commited on
Commit
2a9b22f
·
1 Parent(s): c6ec4bb

first commit

Browse files
model/1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
model/README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+
9
+ ---
10
+
11
+ # {MODEL_NAME}
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Usage (HuggingFace Transformers)
39
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel
43
+ import torch
44
+
45
+
46
+ #Mean Pooling - Take attention mask into account for correct averaging
47
+ def mean_pooling(model_output, attention_mask):
48
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
+
52
+
53
+ # Sentences we want sentence embeddings for
54
+ sentences = ['This is an example sentence', 'Each sentence is converted']
55
+
56
+ # Load model from HuggingFace Hub
57
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
59
+
60
+ # Tokenize sentences
61
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
+
63
+ # Compute token embeddings
64
+ with torch.no_grad():
65
+ model_output = model(**encoded_input)
66
+
67
+ # Perform pooling. In this case, mean pooling.
68
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
+
70
+ print("Sentence embeddings:")
71
+ print(sentence_embeddings)
72
+ ```
73
+
74
+
75
+
76
+ ## Evaluation Results
77
+
78
+ <!--- Describe how your model was evaluated -->
79
+
80
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
+
82
+
83
+ ## Training
84
+ The model was trained with the parameters:
85
+
86
+ **DataLoader**:
87
+
88
+ `torch.utils.data.dataloader.DataLoader` of length 2301 with parameters:
89
+ ```
90
+ {'batch_size': None, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'nkwdataset.BatchNegSampler'}
91
+ ```
92
+
93
+ **Loss**:
94
+
95
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
+
97
+ Parameters of the fit()-Method:
98
+ ```
99
+ {
100
+ "epochs": 1,
101
+ "evaluation_steps": 100,
102
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
+ "max_grad_norm": 1,
104
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
+ "optimizer_params": {
106
+ "lr": 2e-05
107
+ },
108
+ "scheduler": "WarmupLinear",
109
+ "steps_per_epoch": null,
110
+ "warmup_steps": 100,
111
+ "weight_decay": 0.01
112
+ }
113
+ ```
114
+
115
+
116
+ ## Full Model Architecture
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
120
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
+ )
122
+ ```
123
+
124
+ ## Citing & Authors
125
+
126
+ <!--- Describe where people can find more information -->
model/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.27.4",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 64000
25
+ }
model/config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.27.4",
5
+ "pytorch": "2.0.0+cu117"
6
+ }
7
+ }
model/eval/similarity_evaluation_results.csv ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,100,-0.0014084016071803707,-0.005974646349259352,-0.0011148677844655234,-0.006823761697462621,-0.0031921576983014958,-0.008462784423718384,-0.0013527167022492263,-0.006134298479750079
3
+ 0,200,-0.01439619727472125,-0.015789587420051498,-0.012616585674178301,-0.015161242838654849,-0.014894045645202003,-0.018851901064299167,-0.01659789702901683,-0.017743234505539794
4
+ 0,300,-0.008738723873515358,-0.0100447544643897,-0.009797046327609193,-0.014052737089441053,-0.009526474602157036,-0.011658422628695866,-0.009112346677298289,-0.009101418491561469
5
+ 0,400,-0.01313536882963247,-0.014598666539196383,-0.01593316328197991,-0.01811629200418959,-0.01672933061385762,-0.01799174910465491,-0.013151743118259781,-0.01439967997381517
6
+ 0,500,-0.008869364236502473,-0.008790614520590231,-0.010174086262157392,-0.01022940726438435,-0.010878016135249292,-0.010369907390132294,-0.008818899113654025,-0.008713625544425613
7
+ 0,600,-0.01363836263409382,-0.011750128164693528,-0.015303395037270587,-0.01412679926768333,-0.01703749699271561,-0.01486509395290605,-0.015494911088842647,-0.013471547951506135
8
+ 0,700,-0.014600459643236731,-0.014662057250647436,-0.017164554205655037,-0.016331025037158265,-0.017270337006921908,-0.017400432885208553,-0.014055988281518,-0.014777249256824762
9
+ 0,800,-0.014444018529123652,-0.014322977178515894,-0.016619473259190404,-0.017732101068072995,-0.014759393356356036,-0.014067118977203093,-0.014187340072441176,-0.014168537092308909
10
+ 0,900,-0.012059366161042934,-0.00946247318806493,-0.013230994399252573,-0.012596806198439644,-0.015186059366421829,-0.01256792834710906,-0.010968171115246207,-0.009087741877910121
11
+ 0,1000,-0.016443943331842334,-0.01595262486862947,-0.019305602087822143,-0.01957981682054613,-0.017488193995684364,-0.015245016038582321,-0.017474747265768326,-0.01612494672066406
12
+ 0,1100,-0.020416071728638133,-0.02148368288162378,-0.021261296776430773,-0.024522533165576222,-0.020594486767758848,-0.020248150965082434,-0.0208427323676512,-0.021081160640394538
13
+ 0,1200,-0.017012769979586274,-0.016410660138166833,-0.019394052196309144,-0.019055085926952306,-0.02010393619340861,-0.017694564214127836,-0.017026481886912043,-0.016061502585886536
14
+ 0,1300,-0.013486619942277862,-0.012099696435853461,-0.015135997923372509,-0.015821911853236614,-0.017733783338205085,-0.015674052236071614,-0.013124888965812546,-0.012261346698411378
15
+ 0,1400,-0.014441627263798508,-0.011455310368016792,-0.015927679742322686,-0.015247395943780537,-0.016586389912067852,-0.012854957288182142,-0.014352019025621271,-0.0113602548307323
16
+ 0,1500,-0.02077603461024176,-0.01710888452574343,-0.019979384928271213,-0.021134742597521836,-0.022214899094120978,-0.0165309200178185,-0.020667259854019248,-0.01742850041980119
17
+ 0,1600,-0.02198034359783125,-0.02119235835883809,-0.02243668213380327,-0.02359528327966424,-0.021657520619871418,-0.019147644113161326,-0.02240726677808149,-0.021254780447558932
18
+ 0,1700,-0.020417976276599283,-0.016966399859052565,-0.02095824982049848,-0.021055550786257607,-0.02195026237359019,-0.017707957897320572,-0.020353056162476957,-0.016732389555688888
19
+ 0,1800,-0.020990097092713357,-0.01911667438317952,-0.02172250613608771,-0.022940819572541866,-0.022214673669246003,-0.018708375874130656,-0.020740607214797924,-0.018620962268669983
20
+ 0,1900,-0.021400268891744206,-0.017907803727339883,-0.02155435083718565,-0.021807415114090713,-0.02165165545936554,-0.01766511672327363,-0.020884045931872916,-0.017178921483798574
21
+ 0,2000,-0.0206320959150904,-0.01787171265489736,-0.0221929530985392,-0.021354589346700287,-0.021605489099969614,-0.01814777376481024,-0.02039922693742446,-0.01783710600153296
22
+ 0,2100,-0.019802237769944137,-0.016445749043551332,-0.020892064963634077,-0.02024704449503452,-0.020499812514340496,-0.017191359154443267,-0.01991631913362716,-0.016848062506809428
23
+ 0,2200,-0.01939068287472302,-0.014535049360356227,-0.02020889988479752,-0.018989008603544237,-0.020027487013542136,-0.01539548588862228,-0.019217594681193696,-0.01451343654992022
24
+ 0,2300,-0.019515997505572594,-0.01445528622513276,-0.020416274630010528,-0.018983438147986097,-0.020459416083599302,-0.015753158839636242,-0.01935326935442082,-0.014398178058104286
25
+ 0,-1,-0.019516074040339688,-0.01445404042532921,-0.02041634605574272,-0.018983085613887368,-0.020459412230105216,-0.01575297396948282,-0.01935335432409336,-0.014399991239273631
model/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
model/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd99a84a7b0b8d74d212f8e9f29a3c7b86f3185948b490afe389eed25c194a43
3
+ size 540844589
model/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
model/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
model/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
model/tokenizer_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_basic_tokenize": true,
4
+ "do_lower_case": false,
5
+ "mask_token": "[MASK]",
6
+ "max_len": 512,
7
+ "model_max_length": 512,
8
+ "never_split": [
9
+ "[بريد]",
10
+ "[مستخدم]",
11
+ "[رابط]"
12
+ ],
13
+ "pad_token": "[PAD]",
14
+ "sep_token": "[SEP]",
15
+ "special_tokens_map_file": null,
16
+ "strip_accents": null,
17
+ "tokenize_chinese_chars": true,
18
+ "tokenizer_class": "BertTokenizer",
19
+ "unk_token": "[UNK]"
20
+ }
model/vocab.txt ADDED
The diff for this file is too large to render. See raw diff