jeffreymeetkai
commited on
Create modeling_functionary.py
Browse files- modeling_functionary.py +110 -0
modeling_functionary.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
coding=utf-8
|
2 |
+
# Copyright (c) 2024, MeetKai Inc. All rights reserved.
|
3 |
+
"""PyTorch LLaMA model."""
|
4 |
+
|
5 |
+
import json
|
6 |
+
from typing import TYPE_CHECKING, Callable, List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
|
11 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
12 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
13 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
14 |
+
from transformers.generation.utils import (
|
15 |
+
GenerateBeamDecoderOnlyOutput,
|
16 |
+
GenerateBeamEncoderDecoderOutput,
|
17 |
+
GenerateDecoderOnlyOutput,
|
18 |
+
GenerateEncoderDecoderOutput
|
19 |
+
)
|
20 |
+
from transformers.models.llama.modeling_llama import LlamaForCausalLM
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
if TYPE_CHECKING:
|
25 |
+
from transformers.modeling_utils import PreTrainedModel
|
26 |
+
from transformers.generation.streamers import BaseStreamer
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput]
|
31 |
+
GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput]
|
32 |
+
GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
|
33 |
+
|
34 |
+
|
35 |
+
class FunctionaryForCausalLM(LlamaForCausalLM):
|
36 |
+
|
37 |
+
def generate_tool_use(
|
38 |
+
self,
|
39 |
+
inputs: Optional[torch.Tensor] = None,
|
40 |
+
generation_config: Optional[GenerationConfig] = None,
|
41 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
42 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
43 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
44 |
+
synced_gpus: Optional[bool] = None,
|
45 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
46 |
+
streamer: Optional["BaseStreamer"] = None,
|
47 |
+
negative_prompt_ids: Optional[torch.Tensor] = None,
|
48 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
49 |
+
**kwargs,
|
50 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
51 |
+
|
52 |
+
tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we use it to parse raw output
|
53 |
+
|
54 |
+
results = self.generate(
|
55 |
+
inputs=inputs,
|
56 |
+
generation_config=generation_config,
|
57 |
+
logits_processor=logits_processor,
|
58 |
+
stopping_criteria=stopping_criteria,
|
59 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
60 |
+
synced_gpus=synced_gpus,
|
61 |
+
assistant_model=assistant_model,
|
62 |
+
streamer=streamer,
|
63 |
+
negative_prompt_ids=negative_prompt_ids,
|
64 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
65 |
+
**kwargs,
|
66 |
+
)
|
67 |
+
|
68 |
+
input_ids = kwargs.pop("input_ids")
|
69 |
+
function_call_token = ">>>"
|
70 |
+
|
71 |
+
correct_results = []
|
72 |
+
for input_id, result in zip(input_ids, results):
|
73 |
+
final_output_json = {"role": "assistant", "content": None, "tool_calls": None}
|
74 |
+
tool_calls = []
|
75 |
+
raw_output_str = tokenizer.decode(result[len(input_id):].cpu())
|
76 |
+
chunks = raw_output_str.split(function_call_token)
|
77 |
+
for i, chunk in enumerate(chunks):
|
78 |
+
if len(chunk) == 0:
|
79 |
+
continue
|
80 |
+
|
81 |
+
chunk = chunk.replace(tokenizer.pad_token, "")
|
82 |
+
has_text = True if chunk.startswith("all") else False
|
83 |
+
if i == 0 and has_text is not False:
|
84 |
+
final_output_json["content"] = chunk.strip[:-len("<|eot_id|>")] if chunk.endswith("<|eot_id|>") else chunk
|
85 |
+
final_output_json["content"] = final_output_json["content"][len("all\n"):]
|
86 |
+
else:
|
87 |
+
tool_calls.append(
|
88 |
+
{
|
89 |
+
"name": chunk[: chunk.index("\n{")],
|
90 |
+
"arguments": chunk[chunk.index("\n{") + 1: -len("<|eot_id|>")] if chunk.endswith("<|eot_id|>") else chunk[chunk.index("\n{") + 1:]
|
91 |
+
}
|
92 |
+
)
|
93 |
+
if len(tool_calls) > 0:
|
94 |
+
final_output_json["tool_calls"] = tool_calls
|
95 |
+
final_output_str = json.dumps(final_output_json, indent=4)
|
96 |
+
final_output_ids = tokenizer(final_output_str, add_special_tokens=False)["input_ids"]
|
97 |
+
correct_results.append(
|
98 |
+
torch.cat(
|
99 |
+
(result[:len(input_id)].cpu(), torch.tensor(final_output_ids))
|
100 |
+
)
|
101 |
+
)
|
102 |
+
max_len = max([tensor.shape[0] for tensor in correct_results])
|
103 |
+
correct_results = [
|
104 |
+
torch.nn.functional.pad(
|
105 |
+
correct_result, (0, max_len - correct_result.shape[0]), value=tokenizer.eos_token_id
|
106 |
+
) for correct_result in correct_results
|
107 |
+
]
|
108 |
+
correct_results = torch.stack(correct_results)
|
109 |
+
|
110 |
+
return correct_results
|