mehedihasanbijoy commited on
Commit
515525a
·
verified ·
1 Parent(s): 28759f0

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,80 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ base_model: facebook/w2v-bert-2.0
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - common_voice_16_0
9
+ metrics:
10
+ - wer
11
+ model-index:
12
+ - name: w2v-bert-2.0-mongolian-colab-CV16.0
13
+ results:
14
+ - task:
15
+ name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: common_voice_16_0
19
+ type: common_voice_16_0
20
+ config: mn
21
+ split: test
22
+ args: mn
23
+ metrics:
24
+ - name: Wer
25
+ type: wer
26
+ value: 0.5182727865999565
27
  ---
28
 
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
 
32
+ # w2v-bert-2.0-mongolian-colab-CV16.0
33
 
34
+ This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.6866
37
+ - Wer: 0.5183
38
 
39
+ ## Model description
40
 
41
+ More information needed
42
 
43
+ ## Intended uses & limitations
44
 
45
+ More information needed
46
 
47
+ ## Training and evaluation data
48
 
49
+ More information needed
 
 
 
 
 
 
50
 
51
+ ## Training procedure
52
 
53
+ ### Training hyperparameters
54
 
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 16
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 2
61
+ - total_train_batch_size: 32
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_steps: 500
65
+ - num_epochs: 10
66
+ - mixed_precision_training: Native AMP
67
 
68
+ ### Training results
69
 
70
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
71
+ |:-------------:|:------:|:----:|:---------------:|:------:|
72
+ | 1.8436 | 5.2174 | 300 | 0.6866 | 0.5183 |
73
 
 
74
 
75
+ ### Framework versions
76
 
77
+ - Transformers 4.44.2
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.0.0
80
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/w2v-bert-2.0",
3
+ "activation_dropout": 0.0,
4
+ "adapter_act": "relu",
5
+ "adapter_kernel_size": 3,
6
+ "adapter_stride": 2,
7
+ "add_adapter": true,
8
+ "apply_spec_augment": false,
9
+ "architectures": [
10
+ "Wav2Vec2BertForCTC"
11
+ ],
12
+ "attention_dropout": 0.0,
13
+ "bos_token_id": 1,
14
+ "classifier_proj_size": 768,
15
+ "codevector_dim": 768,
16
+ "conformer_conv_dropout": 0.1,
17
+ "contrastive_logits_temperature": 0.1,
18
+ "conv_depthwise_kernel_size": 31,
19
+ "ctc_loss_reduction": "mean",
20
+ "ctc_zero_infinity": false,
21
+ "diversity_loss_weight": 0.1,
22
+ "eos_token_id": 2,
23
+ "feat_proj_dropout": 0.0,
24
+ "feat_quantizer_dropout": 0.0,
25
+ "feature_projection_input_dim": 160,
26
+ "final_dropout": 0.1,
27
+ "hidden_act": "swish",
28
+ "hidden_dropout": 0.0,
29
+ "hidden_size": 1024,
30
+ "initializer_range": 0.02,
31
+ "intermediate_size": 4096,
32
+ "layer_norm_eps": 1e-05,
33
+ "layerdrop": 0.0,
34
+ "left_max_position_embeddings": 64,
35
+ "mask_feature_length": 10,
36
+ "mask_feature_min_masks": 0,
37
+ "mask_feature_prob": 0.0,
38
+ "mask_time_length": 10,
39
+ "mask_time_min_masks": 2,
40
+ "mask_time_prob": 0.0,
41
+ "max_source_positions": 5000,
42
+ "model_type": "wav2vec2-bert",
43
+ "num_adapter_layers": 1,
44
+ "num_attention_heads": 16,
45
+ "num_codevector_groups": 2,
46
+ "num_codevectors_per_group": 320,
47
+ "num_hidden_layers": 24,
48
+ "num_negatives": 100,
49
+ "output_hidden_size": 1024,
50
+ "pad_token_id": 36,
51
+ "position_embeddings_type": "relative_key",
52
+ "proj_codevector_dim": 768,
53
+ "right_max_position_embeddings": 8,
54
+ "rotary_embedding_base": 10000,
55
+ "tdnn_dilation": [
56
+ 1,
57
+ 2,
58
+ 3,
59
+ 1,
60
+ 1
61
+ ],
62
+ "tdnn_dim": [
63
+ 512,
64
+ 512,
65
+ 512,
66
+ 512,
67
+ 1500
68
+ ],
69
+ "tdnn_kernel": [
70
+ 5,
71
+ 3,
72
+ 3,
73
+ 1,
74
+ 1
75
+ ],
76
+ "torch_dtype": "float32",
77
+ "transformers_version": "4.44.2",
78
+ "use_intermediate_ffn_before_adapter": false,
79
+ "use_weighted_layer_sum": false,
80
+ "vocab_size": 39,
81
+ "xvector_output_dim": 512
82
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f58fa5cb858b441dcf1d694bd4fa1bdb99f1c0c0c78f3413283746334075cba9
3
+ size 2422974460
runs/Sep15_19-17-29_87e362905757/events.out.tfevents.1726427890.87e362905757.238.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebaabc7e118a6a49f4f45861bae0e6a92ef3292be50a829a5e2d8ab29133f7cf
3
+ size 7107
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67061dc1c8f3825da18920769fcc8bf1ff37e63754efd1a2be7cfd37f7323e84
3
+ size 5176