---
license: gemma
datasets:
- sam-paech/gutenberg3-generalfiction-scifi-fantasy-romance-adventure-dpo
- sam-paech/gutenbergs_1_2_3_antislop-dpo
language:
- en
base_model:
- google/gemma-2-9b-it
library_name: transformers
tags:
- creative-writing
---
# Oblivion's End
A merged LoRA for gemma-2-9b-it, trained using DPO datasets for creative writing using [my DPO training notebook](https://github.com/mkturkcan/dpo-model-trainer).
## Model Details
### How to Use
```python
from unsloth import FastLanguageModel # we use unsloth for faster inference
import torch
max_seq_length = 4096
dtype = None
load_in_4bit = False
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "mehmetkeremturkcan/oblivionsend",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit
)
from transformers import TextStreamer
FastLanguageModel.for_inference(model)
text_streamer = TextStreamer(tokenizer)
inputs = tokenizer(
[
"""user
Write a story with the following description: Setting - a dark abandoned watchtower and its environs. A wizard carefully explores a tomb where a priest of a dark, dead God has raised a band of brigands that have been terrorizing a town."""+ """
model
"""
], return_tensors = "pt").to("cuda")
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 4096, num_beams=1, temperature=1.0, do_sample=True)
```
### Model Description
- **Finetuned from model:** google/gemma-2-9b-it
### Model Sources [optional]
- **Repository:** [GitHub](https://github.com/mkturkcan/dpo-model-trainer/tree/main).
## Uses
Made for creative writing.
## Training Details
### Training Data
Check out the model card details.
### Training Procedure
Model training performance (margins) are available in the [wandb instance](https://api.wandb.ai/links/mkturkcan/4djkmhwp).
#### Training Hyperparameters
- **Training regime:** bf16 on a 1x 80GB A100 node.
## Environmental Impact
Total emissions are estimated to be 0.83 kgCO$_2$eq.