--- license: gemma datasets: - sam-paech/gutenberg3-generalfiction-scifi-fantasy-romance-adventure-dpo - sam-paech/gutenbergs_1_2_3_antislop-dpo language: - en base_model: - google/gemma-2-9b-it library_name: transformers tags: - creative-writing ---

# Oblivion's End A merged LoRA for gemma-2-9b-it, trained using DPO datasets for creative writing using [my DPO training notebook](https://github.com/mkturkcan/dpo-model-trainer). ## Model Details ### How to Use ```python from unsloth import FastLanguageModel # we use unsloth for faster inference import torch max_seq_length = 4096 dtype = None load_in_4bit = False model, tokenizer = FastLanguageModel.from_pretrained( model_name = "mehmetkeremturkcan/oblivionsend", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit ) from transformers import TextStreamer FastLanguageModel.for_inference(model) text_streamer = TextStreamer(tokenizer) inputs = tokenizer( [ """user Write a story with the following description: Setting - a dark abandoned watchtower and its environs. A wizard carefully explores a tomb where a priest of a dark, dead God has raised a band of brigands that have been terrorizing a town."""+ """ model """ ], return_tensors = "pt").to("cuda") _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 4096, num_beams=1, temperature=1.0, do_sample=True) ``` ### Model Description - **Finetuned from model:** google/gemma-2-9b-it ### Model Sources [optional] - **Repository:** [GitHub](https://github.com/mkturkcan/dpo-model-trainer/tree/main). ## Uses Made for creative writing. ## Training Details ### Training Data Check out the model card details. ### Training Procedure Model training performance (margins) are available in the [wandb instance](https://api.wandb.ai/links/mkturkcan/4djkmhwp). #### Training Hyperparameters - **Training regime:** bf16 on a 1x 80GB A100 node. ## Environmental Impact Total emissions are estimated to be 0.83 kgCO$_2$eq.