mehmetyigitrl commited on
Commit
af5b29e
·
1 Parent(s): 17852e6

First Train and Evaluate

Browse files
FirstModel.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c7c73805db9a951602cb893450d0eaf67c24cfb10cbd3904ad729260bb9baf5
3
+ size 147321
FirstModel/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
FirstModel/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb81e5d4a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb81e5d4af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb81e5d4b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb81e5d4c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb81e5d4ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb81e5d4d30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb81e5d4dc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb81e5d4e50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb81e5d4ee0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb81e5d4f70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb81e5db040>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb81e5db0d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb81e5d6c40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678872225632116600,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPtJryPtju6TiAss7IE8SmafaS6Uw3PMwAAgD8AAIA/zYznupuz5LyFF929BSLcPORjIT66ZYM9AACAPwAAgD/mnRo+Cd1RPnMSOL5vHZm+tQBSPTVe7bwAAAAAAAAAANCbgL43XS0/q4udPg6K6L4DSyC+spclPgAAAAAAAAAArXK0Pty8Rj9DtOa9UQbXvulPwT6qQjG+AAAAAAAAAADNzfa8qZK8P7FjEb7hsh2+ZgPdPI73IT0AAAAAAAAAAAD4nruuJ7m4wDybt0z9ArMxYM47VzS8NgAAgD8AAIA/ABvAvK5NlroKnM8yzb/yMPl+HziWSqCzAACAPwAAgD/Nn708v5iZP32eED41NBi/Ar2FO6gxfDwAAAAAAAAAAMa0RT4ufn8/f0a6PpAlFL/Rj5I+dIHIPQAAAAAAAAAADSaTvRQGrjkKhGi7mt7DNIsaJ7xOWo46AAAAAAAAgD8apT49SCWPuu4OHTYvmgkxtwEXu+JcQrUAAIA/AACAP6BzFj62d0e8lcsAPo+2SztpEqy9mhIlPAAAgD8AAIA/DU7OvU2Cbz8ShDq9Tt34vh/3Br4eWow8AAAAAAAAAACa4Xu7PChQPjP2Zb4wSY++yusevuTnCL0AAAAAAAAAAJrOWb0P8A4/+mijPfMl2L6PMjg6RgiJPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1esWgXG0cECUhpRSlIwBbJRL2YwBdJRHQJNTKvOhTOx1fZQoaAZoCWgPQwgQ5nYv98JtQJSGlFKUaBVL2GgWR0CTU6tW+49YdX2UKGgGaAloD0MIRPrt68AYZ0CUhpRSlGgVTegDaBZHQJNTw1cdHUd1fZQoaAZoCWgPQwj9h/TblwtzQJSGlFKUaBVL2WgWR0CTVD0cOskqdX2UKGgGaAloD0MIMXkDzPzNc0CUhpRSlGgVS+toFkdAk1RYppeu3nV9lChoBmgJaA9DCGx3D9B9Z25AlIaUUpRoFUvcaBZHQJNVEtEofCB1fZQoaAZoCWgPQwiPN/ktOmRyQJSGlFKUaBVL22gWR0CTVoVJcxCZdX2UKGgGaAloD0MIdJZZhCLHcECUhpRSlGgVS/loFkdAk1bIHTqjanV9lChoBmgJaA9DCLgDdcqj+2VAlIaUUpRoFU3oA2gWR0CTV/mygPEsdX2UKGgGaAloD0MI9S9JZYqdckCUhpRSlGgVTSsBaBZHQJNYCkRBeHB1fZQoaAZoCWgPQwiuEiwO50ZvQJSGlFKUaBVL6WgWR0CTWJHMEA5rdX2UKGgGaAloD0MIqRd8mhOlb0CUhpRSlGgVS+BoFkdAk1ij2SMcZXV9lChoBmgJaA9DCO/H7ZcPyXFAlIaUUpRoFUvKaBZHQJNZKyRjjJd1fZQoaAZoCWgPQwhQjZdu0iZyQJSGlFKUaBVL8mgWR0CTWarT6SDAdX2UKGgGaAloD0MIvK302qxTcUCUhpRSlGgVS/5oFkdAk1n/duYQa3V9lChoBmgJaA9DCNtrQe8N3nJAlIaUUpRoFUv0aBZHQJNaWl2vB8B1fZQoaAZoCWgPQwhuTbotkVFxQJSGlFKUaBVL72gWR0CTWtlZHNHIdX2UKGgGaAloD0MIRUseTwseckCUhpRSlGgVS/poFkdAk1sC1eBxxXV9lChoBmgJaA9DCH6s4LdhgHJAlIaUUpRoFUvxaBZHQJNbjxd6cAl1fZQoaAZoCWgPQwhs0QK0rYBqQJSGlFKUaBVNLQJoFkdAk1x5VbRne3V9lChoBmgJaA9DCCydD8+SHXNAlIaUUpRoFUvlaBZHQJNciLwWnCR1fZQoaAZoCWgPQwgtXFZhc7BxQJSGlFKUaBVL7mgWR0CTXPOBDohZdX2UKGgGaAloD0MIWrxYGKJgcUCUhpRSlGgVS8xoFkdAk10x3NcGDHV9lChoBmgJaA9DCBgFwePb3W9AlIaUUpRoFUvXaBZHQJNd6r3j+711fZQoaAZoCWgPQwgnvASnvuFwQJSGlFKUaBVL+GgWR0CTXjJF9a2XdX2UKGgGaAloD0MIbjDUYYUzT0CUhpRSlGgVS7hoFkdAk17G2CuloHV9lChoBmgJaA9DCKVL/5JU6W9AlIaUUpRoFUv6aBZHQJNe0qaw2VF1fZQoaAZoCWgPQwjrVzofHktyQJSGlFKUaBVL12gWR0CTXuTKDCgsdX2UKGgGaAloD0MICd0lcRZpcUCUhpRSlGgVS9JoFkdAk18R0U47zXV9lChoBmgJaA9DCHpx4qudWHNAlIaUUpRoFUv3aBZHQJNfLNwBHTZ1fZQoaAZoCWgPQwhdxHdi1m9xQJSGlFKUaBVLwWgWR0CTYBfUF0PpdX2UKGgGaAloD0MIRiV1AhqEbUCUhpRSlGgVS/JoFkdAk2CIyj59E3V9lChoBmgJaA9DCBZQqKdPRnFAlIaUUpRoFUvDaBZHQJNhA9vCMxZ1fZQoaAZoCWgPQwjZzvdTI/lxQJSGlFKUaBVNFgFoFkdAk4wyxu89OnV9lChoBmgJaA9DCH8UdeYeuXFAlIaUUpRoFUvraBZHQJOMs+otL+R1fZQoaAZoCWgPQwixaaUQCBRwQJSGlFKUaBVL02gWR0CTjMxB3RoidX2UKGgGaAloD0MI+1xtxf6JcUCUhpRSlGgVS+1oFkdAk40suzyBkXV9lChoBmgJaA9DCGXFcHVAV3NAlIaUUpRoFUvPaBZHQJONY0dilSF1fZQoaAZoCWgPQwhw0clSa3VlQJSGlFKUaBVN6ANoFkdAk44bGvOhTXV9lChoBmgJaA9DCKDGvfnNonBAlIaUUpRoFUvWaBZHQJOObp2U0N11fZQoaAZoCWgPQwjMJVXbDQlzQJSGlFKUaBVL+mgWR0CTjqngHeJpdX2UKGgGaAloD0MIdhiT/p60cECUhpRSlGgVS+doFkdAk47LWqcVg3V9lChoBmgJaA9DCCr9hLObk3JAlIaUUpRoFUvjaBZHQJOOysaKk2x1fZQoaAZoCWgPQwiCixU12D1wQJSGlFKUaBVNBQFoFkdAk4+hhDw6Q3V9lChoBmgJaA9DCIPCoExjsnFAlIaUUpRoFUvgaBZHQJOP0R/ViF11fZQoaAZoCWgPQwjbFmU2yO5vQJSGlFKUaBVL52gWR0CTkGCqp97XdX2UKGgGaAloD0MIkdCWc2lGcECUhpRSlGgVS/poFkdAk5FSZKFqSHV9lChoBmgJaA9DCANckC3Lr3JAlIaUUpRoFU1KAWgWR0CTkU9Cu2ZzdX2UKGgGaAloD0MINuUK7zJzcECUhpRSlGgVS/JoFkdAk5GkKNQ0oHV9lChoBmgJaA9DCBy3mJ8b1XJAlIaUUpRoFUvqaBZHQJOR6VAzHjp1fZQoaAZoCWgPQwgsZK4MapZyQJSGlFKUaBVL8WgWR0CTkihWHUMHdX2UKGgGaAloD0MIGOsbmNxlb0CUhpRSlGgVS9loFkdAk5I1Vo6CDnV9lChoBmgJaA9DCJ4I4jycAmVAlIaUUpRoFU3oA2gWR0CTkkposZpBdX2UKGgGaAloD0MIl6yKcFOXckCUhpRSlGgVS/9oFkdAk5LNX9zfanV9lChoBmgJaA9DCMy3Pqw3Q3JAlIaUUpRoFUvBaBZHQJOS+ueSSvF1fZQoaAZoCWgPQwgIkQw5NndvQJSGlFKUaBVLzGgWR0CTkxN8E3bVdX2UKGgGaAloD0MIIcztXq5dcUCUhpRSlGgVS91oFkdAk5M0uHvc8HV9lChoBmgJaA9DCBecwd+vO3NAlIaUUpRoFUvwaBZHQJOTUB2fTTh1fZQoaAZoCWgPQwhMjjulwyJwQJSGlFKUaBVL5mgWR0CTk6RnvlU7dX2UKGgGaAloD0MI8+fbgqUyU0CUhpRSlGgVS7hoFkdAk5Q4D9wWFnV9lChoBmgJaA9DCI4FhUGZ2nNAlIaUUpRoFU0GAWgWR0CTlWe2d/aydX2UKGgGaAloD0MIqmIq/UStcUCUhpRSlGgVS9xoFkdAk5X3jyWiUXV9lChoBmgJaA9DCD3TS4yl+3JAlIaUUpRoFUvFaBZHQJOWYGfPHDJ1fZQoaAZoCWgPQwjDYtS1NnZyQJSGlFKUaBVL02gWR0CTlmrAxi5NdX2UKGgGaAloD0MI46qy7wqCcECUhpRSlGgVS/JoFkdAk5aEx7AtWnV9lChoBmgJaA9DCPVjk/xIAHFAlIaUUpRoFUvfaBZHQJOW/McIZ651fZQoaAZoCWgPQwgB3CxebE5yQJSGlFKUaBVNAQFoFkdAk5c/H5rP+nV9lChoBmgJaA9DCJ4/bVQnV3NAlIaUUpRoFUvwaBZHQJOXh4s3AEd1fZQoaAZoCWgPQwgPKnEdo3twQJSGlFKUaBVLzWgWR0CTl5jnFHawdX2UKGgGaAloD0MIWOcYkD3dckCUhpRSlGgVS89oFkdAk5fuxjawlnV9lChoBmgJaA9DCI24ADTKHm9AlIaUUpRoFUvzaBZHQJOYIkJKJ2t1fZQoaAZoCWgPQwhIpdjRuCFuQJSGlFKUaBVL5GgWR0CTmEKlYU35dX2UKGgGaAloD0MIUN8yp8uwckCUhpRSlGgVS+RoFkdAk5jDuBtk4HV9lChoBmgJaA9DCJBOXflsw3JAlIaUUpRoFU0NAWgWR0CTmNmeUY8/dX2UKGgGaAloD0MIr7Mh/0xDcECUhpRSlGgVS+FoFkdAk5lW3fAKv3V9lChoBmgJaA9DCD/iV6xham9AlIaUUpRoFUvcaBZHQJOaasV+I/J1fZQoaAZoCWgPQwipLuBlxrFwQJSGlFKUaBVLyWgWR0CTm5bQTmGNdX2UKGgGaAloD0MIyAc9m9XJbUCUhpRSlGgVS8ZoFkdAk5vK9PDYRXV9lChoBmgJaA9DCE65wrucdnFAlIaUUpRoFU0HAWgWR0CTnC/PgNwzdX2UKGgGaAloD0MILXqnAi6NckCUhpRSlGgVS/ZoFkdAk5w2PtD2J3V9lChoBmgJaA9DCFaeQNhpG3BAlIaUUpRoFU0AAWgWR0CTnHLQXyiFdX2UKGgGaAloD0MI4ugq3d23cUCUhpRSlGgVTQ4BaBZHQJOc4pkPMB91fZQoaAZoCWgPQwhODp904tdzQJSGlFKUaBVNAAFoFkdAk52RQaaTfXV9lChoBmgJaA9DCPD6zFmfJ3JAlIaUUpRoFUv4aBZHQJOd0ahpQDV1fZQoaAZoCWgPQwgcB14td+1yQJSGlFKUaBVNCQFoFkdAk53fIXCTEHV9lChoBmgJaA9DCAq9/iQ+cW9AlIaUUpRoFUvQaBZHQJOd64c3l0Z1fZQoaAZoCWgPQwippE5AE5dwQJSGlFKUaBVL+mgWR0CTnhXYlIEsdX2UKGgGaAloD0MIo3cq4F4OcECUhpRSlGgVS8poFkdAk55Q9q1w53V9lChoBmgJaA9DCIF8CRUcqG9AlIaUUpRoFUvpaBZHQJOeYRVZLZl1fZQoaAZoCWgPQwh6ceKrnQ9yQJSGlFKUaBVNCAFoFkdAk55/OY6XB3V9lChoBmgJaA9DCCB8KNHSiXFAlIaUUpRoFU2kAmgWR0CTnvDwH7gsdX2UKGgGaAloD0MIMqoM427hUkCUhpRSlGgVS6RoFkdAk5++HJtBOnV9lChoBmgJaA9DCPg3aK++EXJAlIaUUpRoFUvlaBZHQJOftW1c+q11fZQoaAZoCWgPQwg1XrpJjKlyQJSGlFKUaBVL12gWR0CToIblRxcWdX2UKGgGaAloD0MICwith69HckCUhpRSlGgVS/JoFkdAk6D0haC+UXV9lChoBmgJaA9DCMucLovJSHFAlIaUUpRoFUvXaBZHQJOhDUMG5c11fZQoaAZoCWgPQwiCyCJNvHluQJSGlFKUaBVL4GgWR0CToQ1MM7U5dX2UKGgGaAloD0MIl/4lqUzgckCUhpRSlGgVS+loFkdAk6G/2kBS1nV9lChoBmgJaA9DCKWkh6GVJ3BAlIaUUpRoFUvdaBZHQJOiE31jAi51fZQoaAZoCWgPQwiCkCxgAu1wQJSGlFKUaBVL12gWR0CTojLbpNbkdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 496,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
FirstModel/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caf3723a01a5a40ce36042fc94278e59cb8383d6b44c56cb9b1dcd2ba3a6a40f
3
+ size 87929
FirstModel/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ef577be3b4fb35e6161e96452c37f0ae112fd978ce5cc6a6b1135b90e543ddd
3
+ size 43393
FirstModel/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
FirstModel/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.88 +/- 20.39
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb81e5d4a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb81e5d4af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb81e5d4b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb81e5d4c10>", "_build": "<function ActorCriticPolicy._build at 0x7fb81e5d4ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb81e5d4d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb81e5d4dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb81e5d4e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb81e5d4ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb81e5d4f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb81e5db040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb81e5db0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb81e5d6c40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678872225632116600, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPtJryPtju6TiAss7IE8SmafaS6Uw3PMwAAgD8AAIA/zYznupuz5LyFF929BSLcPORjIT66ZYM9AACAPwAAgD/mnRo+Cd1RPnMSOL5vHZm+tQBSPTVe7bwAAAAAAAAAANCbgL43XS0/q4udPg6K6L4DSyC+spclPgAAAAAAAAAArXK0Pty8Rj9DtOa9UQbXvulPwT6qQjG+AAAAAAAAAADNzfa8qZK8P7FjEb7hsh2+ZgPdPI73IT0AAAAAAAAAAAD4nruuJ7m4wDybt0z9ArMxYM47VzS8NgAAgD8AAIA/ABvAvK5NlroKnM8yzb/yMPl+HziWSqCzAACAPwAAgD/Nn708v5iZP32eED41NBi/Ar2FO6gxfDwAAAAAAAAAAMa0RT4ufn8/f0a6PpAlFL/Rj5I+dIHIPQAAAAAAAAAADSaTvRQGrjkKhGi7mt7DNIsaJ7xOWo46AAAAAAAAgD8apT49SCWPuu4OHTYvmgkxtwEXu+JcQrUAAIA/AACAP6BzFj62d0e8lcsAPo+2SztpEqy9mhIlPAAAgD8AAIA/DU7OvU2Cbz8ShDq9Tt34vh/3Br4eWow8AAAAAAAAAACa4Xu7PChQPjP2Zb4wSY++yusevuTnCL0AAAAAAAAAAJrOWb0P8A4/+mijPfMl2L6PMjg6RgiJPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1esWgXG0cECUhpRSlIwBbJRL2YwBdJRHQJNTKvOhTOx1fZQoaAZoCWgPQwgQ5nYv98JtQJSGlFKUaBVL2GgWR0CTU6tW+49YdX2UKGgGaAloD0MIRPrt68AYZ0CUhpRSlGgVTegDaBZHQJNTw1cdHUd1fZQoaAZoCWgPQwj9h/TblwtzQJSGlFKUaBVL2WgWR0CTVD0cOskqdX2UKGgGaAloD0MIMXkDzPzNc0CUhpRSlGgVS+toFkdAk1RYppeu3nV9lChoBmgJaA9DCGx3D9B9Z25AlIaUUpRoFUvcaBZHQJNVEtEofCB1fZQoaAZoCWgPQwiPN/ktOmRyQJSGlFKUaBVL22gWR0CTVoVJcxCZdX2UKGgGaAloD0MIdJZZhCLHcECUhpRSlGgVS/loFkdAk1bIHTqjanV9lChoBmgJaA9DCLgDdcqj+2VAlIaUUpRoFU3oA2gWR0CTV/mygPEsdX2UKGgGaAloD0MI9S9JZYqdckCUhpRSlGgVTSsBaBZHQJNYCkRBeHB1fZQoaAZoCWgPQwiuEiwO50ZvQJSGlFKUaBVL6WgWR0CTWJHMEA5rdX2UKGgGaAloD0MIqRd8mhOlb0CUhpRSlGgVS+BoFkdAk1ij2SMcZXV9lChoBmgJaA9DCO/H7ZcPyXFAlIaUUpRoFUvKaBZHQJNZKyRjjJd1fZQoaAZoCWgPQwhQjZdu0iZyQJSGlFKUaBVL8mgWR0CTWarT6SDAdX2UKGgGaAloD0MIvK302qxTcUCUhpRSlGgVS/5oFkdAk1n/duYQa3V9lChoBmgJaA9DCNtrQe8N3nJAlIaUUpRoFUv0aBZHQJNaWl2vB8B1fZQoaAZoCWgPQwhuTbotkVFxQJSGlFKUaBVL72gWR0CTWtlZHNHIdX2UKGgGaAloD0MIRUseTwseckCUhpRSlGgVS/poFkdAk1sC1eBxxXV9lChoBmgJaA9DCH6s4LdhgHJAlIaUUpRoFUvxaBZHQJNbjxd6cAl1fZQoaAZoCWgPQwhs0QK0rYBqQJSGlFKUaBVNLQJoFkdAk1x5VbRne3V9lChoBmgJaA9DCCydD8+SHXNAlIaUUpRoFUvlaBZHQJNciLwWnCR1fZQoaAZoCWgPQwgtXFZhc7BxQJSGlFKUaBVL7mgWR0CTXPOBDohZdX2UKGgGaAloD0MIWrxYGKJgcUCUhpRSlGgVS8xoFkdAk10x3NcGDHV9lChoBmgJaA9DCBgFwePb3W9AlIaUUpRoFUvXaBZHQJNd6r3j+711fZQoaAZoCWgPQwgnvASnvuFwQJSGlFKUaBVL+GgWR0CTXjJF9a2XdX2UKGgGaAloD0MIbjDUYYUzT0CUhpRSlGgVS7hoFkdAk17G2CuloHV9lChoBmgJaA9DCKVL/5JU6W9AlIaUUpRoFUv6aBZHQJNe0qaw2VF1fZQoaAZoCWgPQwjrVzofHktyQJSGlFKUaBVL12gWR0CTXuTKDCgsdX2UKGgGaAloD0MICd0lcRZpcUCUhpRSlGgVS9JoFkdAk18R0U47zXV9lChoBmgJaA9DCHpx4qudWHNAlIaUUpRoFUv3aBZHQJNfLNwBHTZ1fZQoaAZoCWgPQwhdxHdi1m9xQJSGlFKUaBVLwWgWR0CTYBfUF0PpdX2UKGgGaAloD0MIRiV1AhqEbUCUhpRSlGgVS/JoFkdAk2CIyj59E3V9lChoBmgJaA9DCBZQqKdPRnFAlIaUUpRoFUvDaBZHQJNhA9vCMxZ1fZQoaAZoCWgPQwjZzvdTI/lxQJSGlFKUaBVNFgFoFkdAk4wyxu89OnV9lChoBmgJaA9DCH8UdeYeuXFAlIaUUpRoFUvraBZHQJOMs+otL+R1fZQoaAZoCWgPQwixaaUQCBRwQJSGlFKUaBVL02gWR0CTjMxB3RoidX2UKGgGaAloD0MI+1xtxf6JcUCUhpRSlGgVS+1oFkdAk40suzyBkXV9lChoBmgJaA9DCGXFcHVAV3NAlIaUUpRoFUvPaBZHQJONY0dilSF1fZQoaAZoCWgPQwhw0clSa3VlQJSGlFKUaBVN6ANoFkdAk44bGvOhTXV9lChoBmgJaA9DCKDGvfnNonBAlIaUUpRoFUvWaBZHQJOObp2U0N11fZQoaAZoCWgPQwjMJVXbDQlzQJSGlFKUaBVL+mgWR0CTjqngHeJpdX2UKGgGaAloD0MIdhiT/p60cECUhpRSlGgVS+doFkdAk47LWqcVg3V9lChoBmgJaA9DCCr9hLObk3JAlIaUUpRoFUvjaBZHQJOOysaKk2x1fZQoaAZoCWgPQwiCixU12D1wQJSGlFKUaBVNBQFoFkdAk4+hhDw6Q3V9lChoBmgJaA9DCIPCoExjsnFAlIaUUpRoFUvgaBZHQJOP0R/ViF11fZQoaAZoCWgPQwjbFmU2yO5vQJSGlFKUaBVL52gWR0CTkGCqp97XdX2UKGgGaAloD0MIkdCWc2lGcECUhpRSlGgVS/poFkdAk5FSZKFqSHV9lChoBmgJaA9DCANckC3Lr3JAlIaUUpRoFU1KAWgWR0CTkU9Cu2ZzdX2UKGgGaAloD0MINuUK7zJzcECUhpRSlGgVS/JoFkdAk5GkKNQ0oHV9lChoBmgJaA9DCBy3mJ8b1XJAlIaUUpRoFUvqaBZHQJOR6VAzHjp1fZQoaAZoCWgPQwgsZK4MapZyQJSGlFKUaBVL8WgWR0CTkihWHUMHdX2UKGgGaAloD0MIGOsbmNxlb0CUhpRSlGgVS9loFkdAk5I1Vo6CDnV9lChoBmgJaA9DCJ4I4jycAmVAlIaUUpRoFU3oA2gWR0CTkkposZpBdX2UKGgGaAloD0MIl6yKcFOXckCUhpRSlGgVS/9oFkdAk5LNX9zfanV9lChoBmgJaA9DCMy3Pqw3Q3JAlIaUUpRoFUvBaBZHQJOS+ueSSvF1fZQoaAZoCWgPQwgIkQw5NndvQJSGlFKUaBVLzGgWR0CTkxN8E3bVdX2UKGgGaAloD0MIIcztXq5dcUCUhpRSlGgVS91oFkdAk5M0uHvc8HV9lChoBmgJaA9DCBecwd+vO3NAlIaUUpRoFUvwaBZHQJOTUB2fTTh1fZQoaAZoCWgPQwhMjjulwyJwQJSGlFKUaBVL5mgWR0CTk6RnvlU7dX2UKGgGaAloD0MI8+fbgqUyU0CUhpRSlGgVS7hoFkdAk5Q4D9wWFnV9lChoBmgJaA9DCI4FhUGZ2nNAlIaUUpRoFU0GAWgWR0CTlWe2d/aydX2UKGgGaAloD0MIqmIq/UStcUCUhpRSlGgVS9xoFkdAk5X3jyWiUXV9lChoBmgJaA9DCD3TS4yl+3JAlIaUUpRoFUvFaBZHQJOWYGfPHDJ1fZQoaAZoCWgPQwjDYtS1NnZyQJSGlFKUaBVL02gWR0CTlmrAxi5NdX2UKGgGaAloD0MI46qy7wqCcECUhpRSlGgVS/JoFkdAk5aEx7AtWnV9lChoBmgJaA9DCPVjk/xIAHFAlIaUUpRoFUvfaBZHQJOW/McIZ651fZQoaAZoCWgPQwgB3CxebE5yQJSGlFKUaBVNAQFoFkdAk5c/H5rP+nV9lChoBmgJaA9DCJ4/bVQnV3NAlIaUUpRoFUvwaBZHQJOXh4s3AEd1fZQoaAZoCWgPQwgPKnEdo3twQJSGlFKUaBVLzWgWR0CTl5jnFHawdX2UKGgGaAloD0MIWOcYkD3dckCUhpRSlGgVS89oFkdAk5fuxjawlnV9lChoBmgJaA9DCI24ADTKHm9AlIaUUpRoFUvzaBZHQJOYIkJKJ2t1fZQoaAZoCWgPQwhIpdjRuCFuQJSGlFKUaBVL5GgWR0CTmEKlYU35dX2UKGgGaAloD0MIUN8yp8uwckCUhpRSlGgVS+RoFkdAk5jDuBtk4HV9lChoBmgJaA9DCJBOXflsw3JAlIaUUpRoFU0NAWgWR0CTmNmeUY8/dX2UKGgGaAloD0MIr7Mh/0xDcECUhpRSlGgVS+FoFkdAk5lW3fAKv3V9lChoBmgJaA9DCD/iV6xham9AlIaUUpRoFUvcaBZHQJOaasV+I/J1fZQoaAZoCWgPQwipLuBlxrFwQJSGlFKUaBVLyWgWR0CTm5bQTmGNdX2UKGgGaAloD0MIyAc9m9XJbUCUhpRSlGgVS8ZoFkdAk5vK9PDYRXV9lChoBmgJaA9DCE65wrucdnFAlIaUUpRoFU0HAWgWR0CTnC/PgNwzdX2UKGgGaAloD0MILXqnAi6NckCUhpRSlGgVS/ZoFkdAk5w2PtD2J3V9lChoBmgJaA9DCFaeQNhpG3BAlIaUUpRoFU0AAWgWR0CTnHLQXyiFdX2UKGgGaAloD0MI4ugq3d23cUCUhpRSlGgVTQ4BaBZHQJOc4pkPMB91fZQoaAZoCWgPQwhODp904tdzQJSGlFKUaBVNAAFoFkdAk52RQaaTfXV9lChoBmgJaA9DCPD6zFmfJ3JAlIaUUpRoFUv4aBZHQJOd0ahpQDV1fZQoaAZoCWgPQwgcB14td+1yQJSGlFKUaBVNCQFoFkdAk53fIXCTEHV9lChoBmgJaA9DCAq9/iQ+cW9AlIaUUpRoFUvQaBZHQJOd64c3l0Z1fZQoaAZoCWgPQwippE5AE5dwQJSGlFKUaBVL+mgWR0CTnhXYlIEsdX2UKGgGaAloD0MIo3cq4F4OcECUhpRSlGgVS8poFkdAk55Q9q1w53V9lChoBmgJaA9DCIF8CRUcqG9AlIaUUpRoFUvpaBZHQJOeYRVZLZl1fZQoaAZoCWgPQwh6ceKrnQ9yQJSGlFKUaBVNCAFoFkdAk55/OY6XB3V9lChoBmgJaA9DCCB8KNHSiXFAlIaUUpRoFU2kAmgWR0CTnvDwH7gsdX2UKGgGaAloD0MIMqoM427hUkCUhpRSlGgVS6RoFkdAk5++HJtBOnV9lChoBmgJaA9DCPg3aK++EXJAlIaUUpRoFUvlaBZHQJOftW1c+q11fZQoaAZoCWgPQwg1XrpJjKlyQJSGlFKUaBVL12gWR0CToIblRxcWdX2UKGgGaAloD0MICwith69HckCUhpRSlGgVS/JoFkdAk6D0haC+UXV9lChoBmgJaA9DCMucLovJSHFAlIaUUpRoFUvXaBZHQJOhDUMG5c11fZQoaAZoCWgPQwiCyCJNvHluQJSGlFKUaBVL4GgWR0CToQ1MM7U5dX2UKGgGaAloD0MIl/4lqUzgckCUhpRSlGgVS+loFkdAk6G/2kBS1nV9lChoBmgJaA9DCKWkh6GVJ3BAlIaUUpRoFUvdaBZHQJOiE31jAi51fZQoaAZoCWgPQwiCkCxgAu1wQJSGlFKUaBVL12gWR0CTojLbpNbkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (189 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.8802817307439, "std_reward": 20.38747358551407, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T10:32:28.189992"}