mehulbhosale commited on
Commit
124a0e3
1 Parent(s): 5f8a054

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.26 +/- 32.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb5587a24d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb5587a2560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb5587a25f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb5587a2680>", "_build": "<function ActorCriticPolicy._build at 0x7bb5587a2710>", "forward": "<function ActorCriticPolicy.forward at 0x7bb5587a27a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb5587a2830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb5587a28c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb5587a2950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb5587a29e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb5587a2a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb5587a2b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb55873ce80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727186468860059759, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA6Db09+iy7NRRlPCzUizyINUU8/W9xvQAAgD8AAIA/QDHevSvgLD/eGaQ6KY2NviFM+rzyx7W8AAAAAAAAAADADLc9exaiusXXjry9FXc8DgImvJqVVz0AAIA/AAAAAADM67sI0N89hYt1PfOAiL6l/8E80IFwPQAAAAAAAAAA8s+AvvweGT9aiZM9XMuDvjNSu709pSk+AAAAAAAAAAAaLUW+u2ijvEF7Q7wLAZY7394QPtqebLwAAIA/AACAP5MaEb5Os4Y+8uuCPuEdZL7RK1U980N/uwAAAAAAAAAAgGUuPSn6aTtTPfG7mwyevjhdHr16tOS9AAAAAAAAAADmzFg9SIOpugQrDDgRcBEzlpEoOlprILcAAIA/AACAP83sRz2PMhe67cKgupHkprTW6mu7mNa9OQAAgD8AAIA/uqEsvpgItT5affg9RYOYvnoez7zawgy+AAAAAAAAAACz4t09PbonuT4wXbrDEVG2C1hcu94igTkAAIA/AACAP5q9Sryui5M+rSCUvK0Fob48GKu8q7NavQAAAAAAAAAAhtEavlXzLz6TqyY+2g5LvmknkbxdnAW9AAAAAAAAAAAAzCs8uJ7puXGBCrrunqU1+X4Qu8kuHzkAAIA/AACAPxq+FL6+7+c9qjJcPjESY77czeI8yKK+vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDnNOmBOHqMAWyUTWQBjAF0lEdAq88SKJl8PXV9lChoBkdAcYGVrhzeXWgHTSIBaAhHQKvPfDOTq0N1fZQoaAZHQHDSJ7LMcIZoB00+AWgIR0Crz9x3V09ydX2UKGgGR0BNqsx46fapaAdLyGgIR0Cr2sPD50r9dX2UKGgGR0BvDuR9w3o+aAdNBwFoCEdAq9rdJcxCY3V9lChoBkdAckhPikwevWgHTVIBaAhHQKva9iVjZth1fZQoaAZHQHA8ylrM1TBoB00lAWgIR0Cr22C5/b0wdX2UKGgGR0BzG/7DVH4HaAdNKgFoCEdAq91XRJEpiXV9lChoBkdAcB3hZQpF1GgHTXIBaAhHQKvd8CA+Y+l1fZQoaAZHQHIWfpIMBp5oB00vAWgIR0Cr3hvS+g14dX2UKGgGR0Bwy5okAxSHaAdNOwFoCEdAq94x4wAU+XV9lChoBkdAcKLYfW+XaGgHTXoBaAhHQKvedagVXV91fZQoaAZHQHDOaWszVMFoB00KAWgIR0Cr3y7tJFspdX2UKGgGR0Bwh/ZM+NcXaAdNjAFoCEdAq983vnbItHV9lChoBkdAcJpUXpGFz2gHTRgBaAhHQKvf4VX3g1p1fZQoaAZHQHHnxE4Nqg1oB00YAWgIR0Cr4EpaRp1zdX2UKGgGR0Bw4aEdvKlpaAdNDgFoCEdAq+CbX6InB3V9lChoBkdAcjRkXDWK/GgHTc8BaAhHQKvg+ki2Ujd1fZQoaAZHQFm4bpNbkfdoB03oA2gIR0Cr4Qxhc7hfdX2UKGgGR0BzWELG7z06aAdNVgFoCEdAq+H+WnjyWnV9lChoBkdAcCgZ9NN8E2gHTQMBaAhHQKviNq+rU9Z1fZQoaAZHQHJQhUedTYNoB01bAWgIR0Cr4m9Mj/uLdX2UKGgGR0Bx9pNFjNILaAdL9mgIR0Cr4nzakAPvdX2UKGgGR0ByeUw482aVaAdL32gIR0Cr4yJjDsMRdX2UKGgGR0Bwaa2oegctaAdNKgFoCEdAq+OE2zfJm3V9lChoBkdAcPJTcqOLi2gHTbcBaAhHQKvjkoE0SAZ1fZQoaAZHQHHN+FL39JloB00RAWgIR0Cr5QC48U22dX2UKGgGR0ByCa1ndweeaAdNUwFoCEdAq+UhrrPdEnV9lChoBkdAbc/PE87p3WgHTTgBaAhHQKvlWtnwob51fZQoaAZHQHAdsjzI3itoB00hAWgIR0Cr5ayPuG9IdX2UKGgGR0BzcIMI/qxDaAdNoQFoCEdAq+XmEh7mdXV9lChoBkdAUN5G+bmU4mgHS8xoCEdAq+YNIy0rsnV9lChoBkdAcPYIv8IiT2gHTSMBaAhHQKvmE9zwMH91fZQoaAZHQHLK4An2IwdoB0v6aAhHQKvmkX8fmtB1fZQoaAZHQFFMjM3ZPEdoB0vRaAhHQKvmyVM23rl1fZQoaAZHQG7l0Wl/H5toB01LAWgIR0Cr5sqziS7odX2UKGgGR0BxsZJ2+wkgaAdN9wFoCEdAq+cGwgTyrnV9lChoBkdAcMV/ZuhsZmgHTRsBaAhHQKvnQBV+7UZ1fZQoaAZHQHK3GhufmLdoB01uAWgIR0Cr6CZj6N2ldX2UKGgGR0Bwsv2bobGWaAdNJQFoCEdAq+ho9vCMxXV9lChoBkdAbfVl8PWhAWgHTSIBaAhHQKvobDYRNAV1fZQoaAZHQHC4KhUR3/xoB0v5aAhHQKvpBWyTpxF1fZQoaAZHQHGKkDQqqfhoB0v4aAhHQKvpRy8zyjJ1fZQoaAZHQGMVGEf1YhdoB03oA2gIR0Cr6agf2bobdX2UKGgGR0BuMT2alUIcaAdNNQFoCEdAq+oYQlKK53V9lChoBkdAcCkHGS6lL2gHTScBaAhHQKvqVEQXhwV1fZQoaAZHQHB4bY02tMhoB00pAWgIR0Cr6peK0lZ6dX2UKGgGR0BrxMZpBX0YaAdNBgFoCEdAq+roYP5HmXV9lChoBkdAcmmDLKV6eGgHTUUBaAhHQKvrN9ETg2t1fZQoaAZHQErF114gRsdoB0vMaAhHQKvrv7l7tzF1fZQoaAZHQHFgbWI42jxoB00/AWgIR0Cr6+PEjxCqdX2UKGgGR0Bwq4M1CPZJaAdNPwFoCEdAq+wpXuE253V9lChoBkdAbPPS4OMER2gHTYABaAhHQKvszMW43FV1fZQoaAZHQHC594eLehxoB01YAWgIR0Cr7OIOpbUxdX2UKGgGR0BrfyOo5xR3aAdNJQFoCEdAq/lDeO4oZ3V9lChoBkdAbTHwd8zAOGgHTSEBaAhHQKv5nL5AQg91fZQoaAZHQG2tYBeXzDpoB03TAWgIR0Cr+kWqDK5kdX2UKGgGR0Bsj8J6Y3NtaAdNOQFoCEdAq/vGkcjqwHV9lChoBkdAcSoWtU4rBmgHTTIBaAhHQKv8DfHggox1fZQoaAZHQHFzO3pfQa9oB01dAWgIR0Cr/BoFmnO0dX2UKGgGR0Bvs6iXY150aAdNIQFoCEdAq/wyBRQ793V9lChoBkdAcEdHiWE9MmgHTSUBaAhHQKv8dWbPQfJ1fZQoaAZHQG4c+SjgydpoB00bAWgIR0Cr/NgAyVOcdX2UKGgGR0Bti+/vfCQ+aAdNTQFoCEdAq/1XBzmwJXV9lChoBkdAbZNopQUHp2gHTQ4BaAhHQKv9cb6P8yh1fZQoaAZHQHGWVuR9w3poB00IAWgIR0Cr/XlolD4QdX2UKGgGR0Bwz5uwX668aAdNWAFoCEdAq/4bMLWqcXV9lChoBkdAcTjCBPKuCGgHTS4BaAhHQKv+SWv8qF11fZQoaAZHQHL+ElAu7H1oB00mAWgIR0Cr/rk+HJtBdX2UKGgGR0BxAioUBXCCaAdNJAFoCEdAq/8XmxMWXXV9lChoBkdAcdObcXWOImgHTTYBaAhHQKv/LP557gN1fZQoaAZHQG6HA6EJ0GNoB00UAWgIR0Cr/zx3mmtRdX2UKGgGR0Bt5Kl54W1uaAdNTAFoCEdAq/9bYI0IknV9lChoBkdAb6XvCuU2UGgHTRIBaAhHQKwAVRLsa891fZQoaAZHQHFTHUc4o7VoB00oAWgIR0CsAIlyq+8HdX2UKGgGR0BwqZZdOZb7aAdNKAFoCEdArACUaCL/CXV9lChoBkdAcniW07bL2mgHTVQBaAhHQKwA9m/336B1fZQoaAZHQG3j/sNUfgdoB00hAWgIR0CsAeieumrKdX2UKGgGR0BzGSkAPuohaAdNXgFoCEdArAHlqk/KQ3V9lChoBkdAcdl2AXl8xGgHTUgBaAhHQKwB76nBLwp1fZQoaAZHQHGhJ0OmR/5oB01WAWgIR0CsAqv1+RYBdX2UKGgGR0Byr6WdEsreaAdNKAFoCEdArALt8CxNZnV9lChoBkdAcgn7uDzy0GgHTTQBaAhHQKwC8QZn+Q51fZQoaAZHQHHFnlXA/LVoB00OAWgIR0CsA4loUSIydX2UKGgGR0BviexdIGyHaAdNOAFoCEdArARI9C/oJXV9lChoBkdAcXnszEaVEGgHTUEBaAhHQKwEWfcvduZ1fZQoaAZHQG47XbM5fdBoB00MAWgIR0CsBQVlPJq7dX2UKGgGR0Bwr+rKeTV2aAdNDAFoCEdArAVEnuy/sXV9lChoBkdAcmFCxu89OmgHTa8BaAhHQKwG5TS9du51fZQoaAZHQHIYhsZYPoVoB00MAWgIR0CsBu9nCfpVdX2UKGgGR0BtpDCk43m3aAdNDwFoCEdArAcGd9Ujs3V9lChoBkdAcVRnw5NoJ2gHTXABaAhHQKwH3rULDyh1fZQoaAZHv9sZTAFgUlBoB0vqaAhHQKwIMuL74zt1fZQoaAZHQHF5AUUO/cpoB02lAWgIR0CsCHJnQID6dX2UKGgGR0Bw7FeWv8qGaAdNNAFoCEdArAitK9PDYXV9lChoBkdAcH0wSrYGuGgHTXkBaAhHQKwJF8XN1Qt1fZQoaAZHQG8icCPp6hRoB01IAWgIR0CsCVRcE/0NdX2UKGgGR0ByiA371qWUaAdNAgFoCEdArAlezF+/g3V9lChoBkdAcIUmF8G9pWgHTSQBaAhHQKwKAOx0MgF1fZQoaAZHQG2tXqiXY15oB013AWgIR0CsChun/DLsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42c0fc1b6aa844bbe68cfe73962c8b9dd11e8e544f3252df9a7a0691c1387b20
3
+ size 148072
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb5587a24d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb5587a2560>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb5587a25f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb5587a2680>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bb5587a2710>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bb5587a27a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb5587a2830>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb5587a28c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bb5587a2950>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb5587a29e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb5587a2a70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb5587a2b00>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bb55873ce80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1727186468860059759,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA6Db09+iy7NRRlPCzUizyINUU8/W9xvQAAgD8AAIA/QDHevSvgLD/eGaQ6KY2NviFM+rzyx7W8AAAAAAAAAADADLc9exaiusXXjry9FXc8DgImvJqVVz0AAIA/AAAAAADM67sI0N89hYt1PfOAiL6l/8E80IFwPQAAAAAAAAAA8s+AvvweGT9aiZM9XMuDvjNSu709pSk+AAAAAAAAAAAaLUW+u2ijvEF7Q7wLAZY7394QPtqebLwAAIA/AACAP5MaEb5Os4Y+8uuCPuEdZL7RK1U980N/uwAAAAAAAAAAgGUuPSn6aTtTPfG7mwyevjhdHr16tOS9AAAAAAAAAADmzFg9SIOpugQrDDgRcBEzlpEoOlprILcAAIA/AACAP83sRz2PMhe67cKgupHkprTW6mu7mNa9OQAAgD8AAIA/uqEsvpgItT5affg9RYOYvnoez7zawgy+AAAAAAAAAACz4t09PbonuT4wXbrDEVG2C1hcu94igTkAAIA/AACAP5q9Sryui5M+rSCUvK0Fob48GKu8q7NavQAAAAAAAAAAhtEavlXzLz6TqyY+2g5LvmknkbxdnAW9AAAAAAAAAAAAzCs8uJ7puXGBCrrunqU1+X4Qu8kuHzkAAIA/AACAPxq+FL6+7+c9qjJcPjESY77czeI8yKK+vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDnNOmBOHqMAWyUTWQBjAF0lEdAq88SKJl8PXV9lChoBkdAcYGVrhzeXWgHTSIBaAhHQKvPfDOTq0N1fZQoaAZHQHDSJ7LMcIZoB00+AWgIR0Crz9x3V09ydX2UKGgGR0BNqsx46fapaAdLyGgIR0Cr2sPD50r9dX2UKGgGR0BvDuR9w3o+aAdNBwFoCEdAq9rdJcxCY3V9lChoBkdAckhPikwevWgHTVIBaAhHQKva9iVjZth1fZQoaAZHQHA8ylrM1TBoB00lAWgIR0Cr22C5/b0wdX2UKGgGR0BzG/7DVH4HaAdNKgFoCEdAq91XRJEpiXV9lChoBkdAcB3hZQpF1GgHTXIBaAhHQKvd8CA+Y+l1fZQoaAZHQHIWfpIMBp5oB00vAWgIR0Cr3hvS+g14dX2UKGgGR0Bwy5okAxSHaAdNOwFoCEdAq94x4wAU+XV9lChoBkdAcKLYfW+XaGgHTXoBaAhHQKvedagVXV91fZQoaAZHQHDOaWszVMFoB00KAWgIR0Cr3y7tJFspdX2UKGgGR0Bwh/ZM+NcXaAdNjAFoCEdAq983vnbItHV9lChoBkdAcJpUXpGFz2gHTRgBaAhHQKvf4VX3g1p1fZQoaAZHQHHnxE4Nqg1oB00YAWgIR0Cr4EpaRp1zdX2UKGgGR0Bw4aEdvKlpaAdNDgFoCEdAq+CbX6InB3V9lChoBkdAcjRkXDWK/GgHTc8BaAhHQKvg+ki2Ujd1fZQoaAZHQFm4bpNbkfdoB03oA2gIR0Cr4Qxhc7hfdX2UKGgGR0BzWELG7z06aAdNVgFoCEdAq+H+WnjyWnV9lChoBkdAcCgZ9NN8E2gHTQMBaAhHQKviNq+rU9Z1fZQoaAZHQHJQhUedTYNoB01bAWgIR0Cr4m9Mj/uLdX2UKGgGR0Bx9pNFjNILaAdL9mgIR0Cr4nzakAPvdX2UKGgGR0ByeUw482aVaAdL32gIR0Cr4yJjDsMRdX2UKGgGR0Bwaa2oegctaAdNKgFoCEdAq+OE2zfJm3V9lChoBkdAcPJTcqOLi2gHTbcBaAhHQKvjkoE0SAZ1fZQoaAZHQHHN+FL39JloB00RAWgIR0Cr5QC48U22dX2UKGgGR0ByCa1ndweeaAdNUwFoCEdAq+UhrrPdEnV9lChoBkdAbc/PE87p3WgHTTgBaAhHQKvlWtnwob51fZQoaAZHQHAdsjzI3itoB00hAWgIR0Cr5ayPuG9IdX2UKGgGR0BzcIMI/qxDaAdNoQFoCEdAq+XmEh7mdXV9lChoBkdAUN5G+bmU4mgHS8xoCEdAq+YNIy0rsnV9lChoBkdAcPYIv8IiT2gHTSMBaAhHQKvmE9zwMH91fZQoaAZHQHLK4An2IwdoB0v6aAhHQKvmkX8fmtB1fZQoaAZHQFFMjM3ZPEdoB0vRaAhHQKvmyVM23rl1fZQoaAZHQG7l0Wl/H5toB01LAWgIR0Cr5sqziS7odX2UKGgGR0BxsZJ2+wkgaAdN9wFoCEdAq+cGwgTyrnV9lChoBkdAcMV/ZuhsZmgHTRsBaAhHQKvnQBV+7UZ1fZQoaAZHQHK3GhufmLdoB01uAWgIR0Cr6CZj6N2ldX2UKGgGR0Bwsv2bobGWaAdNJQFoCEdAq+ho9vCMxXV9lChoBkdAbfVl8PWhAWgHTSIBaAhHQKvobDYRNAV1fZQoaAZHQHC4KhUR3/xoB0v5aAhHQKvpBWyTpxF1fZQoaAZHQHGKkDQqqfhoB0v4aAhHQKvpRy8zyjJ1fZQoaAZHQGMVGEf1YhdoB03oA2gIR0Cr6agf2bobdX2UKGgGR0BuMT2alUIcaAdNNQFoCEdAq+oYQlKK53V9lChoBkdAcCkHGS6lL2gHTScBaAhHQKvqVEQXhwV1fZQoaAZHQHB4bY02tMhoB00pAWgIR0Cr6peK0lZ6dX2UKGgGR0BrxMZpBX0YaAdNBgFoCEdAq+roYP5HmXV9lChoBkdAcmmDLKV6eGgHTUUBaAhHQKvrN9ETg2t1fZQoaAZHQErF114gRsdoB0vMaAhHQKvrv7l7tzF1fZQoaAZHQHFgbWI42jxoB00/AWgIR0Cr6+PEjxCqdX2UKGgGR0Bwq4M1CPZJaAdNPwFoCEdAq+wpXuE253V9lChoBkdAbPPS4OMER2gHTYABaAhHQKvszMW43FV1fZQoaAZHQHC594eLehxoB01YAWgIR0Cr7OIOpbUxdX2UKGgGR0BrfyOo5xR3aAdNJQFoCEdAq/lDeO4oZ3V9lChoBkdAbTHwd8zAOGgHTSEBaAhHQKv5nL5AQg91fZQoaAZHQG2tYBeXzDpoB03TAWgIR0Cr+kWqDK5kdX2UKGgGR0Bsj8J6Y3NtaAdNOQFoCEdAq/vGkcjqwHV9lChoBkdAcSoWtU4rBmgHTTIBaAhHQKv8DfHggox1fZQoaAZHQHFzO3pfQa9oB01dAWgIR0Cr/BoFmnO0dX2UKGgGR0Bvs6iXY150aAdNIQFoCEdAq/wyBRQ793V9lChoBkdAcEdHiWE9MmgHTSUBaAhHQKv8dWbPQfJ1fZQoaAZHQG4c+SjgydpoB00bAWgIR0Cr/NgAyVOcdX2UKGgGR0Bti+/vfCQ+aAdNTQFoCEdAq/1XBzmwJXV9lChoBkdAbZNopQUHp2gHTQ4BaAhHQKv9cb6P8yh1fZQoaAZHQHGWVuR9w3poB00IAWgIR0Cr/XlolD4QdX2UKGgGR0Bwz5uwX668aAdNWAFoCEdAq/4bMLWqcXV9lChoBkdAcTjCBPKuCGgHTS4BaAhHQKv+SWv8qF11fZQoaAZHQHL+ElAu7H1oB00mAWgIR0Cr/rk+HJtBdX2UKGgGR0BxAioUBXCCaAdNJAFoCEdAq/8XmxMWXXV9lChoBkdAcdObcXWOImgHTTYBaAhHQKv/LP557gN1fZQoaAZHQG6HA6EJ0GNoB00UAWgIR0Cr/zx3mmtRdX2UKGgGR0Bt5Kl54W1uaAdNTAFoCEdAq/9bYI0IknV9lChoBkdAb6XvCuU2UGgHTRIBaAhHQKwAVRLsa891fZQoaAZHQHFTHUc4o7VoB00oAWgIR0CsAIlyq+8HdX2UKGgGR0BwqZZdOZb7aAdNKAFoCEdArACUaCL/CXV9lChoBkdAcniW07bL2mgHTVQBaAhHQKwA9m/336B1fZQoaAZHQG3j/sNUfgdoB00hAWgIR0CsAeieumrKdX2UKGgGR0BzGSkAPuohaAdNXgFoCEdArAHlqk/KQ3V9lChoBkdAcdl2AXl8xGgHTUgBaAhHQKwB76nBLwp1fZQoaAZHQHGhJ0OmR/5oB01WAWgIR0CsAqv1+RYBdX2UKGgGR0Byr6WdEsreaAdNKAFoCEdArALt8CxNZnV9lChoBkdAcgn7uDzy0GgHTTQBaAhHQKwC8QZn+Q51fZQoaAZHQHHFnlXA/LVoB00OAWgIR0CsA4loUSIydX2UKGgGR0BviexdIGyHaAdNOAFoCEdArARI9C/oJXV9lChoBkdAcXnszEaVEGgHTUEBaAhHQKwEWfcvduZ1fZQoaAZHQG47XbM5fdBoB00MAWgIR0CsBQVlPJq7dX2UKGgGR0Bwr+rKeTV2aAdNDAFoCEdArAVEnuy/sXV9lChoBkdAcmFCxu89OmgHTa8BaAhHQKwG5TS9du51fZQoaAZHQHIYhsZYPoVoB00MAWgIR0CsBu9nCfpVdX2UKGgGR0BtpDCk43m3aAdNDwFoCEdArAcGd9Ujs3V9lChoBkdAcVRnw5NoJ2gHTXABaAhHQKwH3rULDyh1fZQoaAZHv9sZTAFgUlBoB0vqaAhHQKwIMuL74zt1fZQoaAZHQHF5AUUO/cpoB02lAWgIR0CsCHJnQID6dX2UKGgGR0Bw7FeWv8qGaAdNNAFoCEdArAitK9PDYXV9lChoBkdAcH0wSrYGuGgHTXkBaAhHQKwJF8XN1Qt1fZQoaAZHQG8icCPp6hRoB01IAWgIR0CsCVRcE/0NdX2UKGgGR0ByiA371qWUaAdNAgFoCEdArAlezF+/g3V9lChoBkdAcIUmF8G9pWgHTSQBaAhHQKwKAOx0MgF1fZQoaAZHQG2tXqiXY15oB013AWgIR0CsChun/DLsdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84d8405e6996b16d470848e2f2796906f38fc8a64533fd9baec19697df88c798
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a36df9950d46e877b1901076c640fb63aa71eaae3f5505dc716472c8f1914c6
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (152 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.25565446168685, "std_reward": 32.44307779710119, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-24T14:27:08.718830"}