--- license: gemma library_name: peft tags: - generated_from_trainer base_model: google/gemma-2b-it metrics: - accuracy - f1 - precision - recall model-index: - name: gemma-ai-detect-v2-multilingual results: [] --- # gemma-ai-detect-v2-multilingual This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8702 - Accuracy: 0.6187 - F1: 0.7644 - Precision: 0.6187 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9505 | 1.0 | 1250 | 0.8702 | 0.6187 | 0.7644 | 0.6187 | 1.0 | | 0.0 | 2.0 | 2500 | 0.8702 | 0.6187 | 0.7644 | 0.6187 | 1.0 | | 0.0 | 3.0 | 3750 | 0.8702 | 0.6187 | 0.7644 | 0.6187 | 1.0 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.5.1+cu124 - Datasets 2.18.0 - Tokenizers 0.19.1