--- license: llama3 library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B metrics: - accuracy - precision - recall - f1 model-index: - name: llama-ai-detect-v3-test-vastai results: [] --- # llama-ai-detect-v3-test-vastai This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7499 - Accuracy: 0.7 - Precision: 0.7143 - Recall: 0.8333 - F1: 0.7692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 1 | 1.0919 | 0.6 | 0.6667 | 0.6667 | 0.6667 | | No log | 2.0 | 2 | 0.9340 | 0.7 | 0.7143 | 0.8333 | 0.7692 | | No log | 3.0 | 3 | 0.8300 | 0.7 | 0.7143 | 0.8333 | 0.7692 | | No log | 4.0 | 4 | 0.7732 | 0.7 | 0.7143 | 0.8333 | 0.7692 | | No log | 5.0 | 5 | 0.7499 | 0.7 | 0.7143 | 0.8333 | 0.7692 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1