File size: 1,939 Bytes
4371e24 2cff693 4371e24 2cff693 4371e24 2cff693 4371e24 2cff693 4371e24 2cff693 4371e24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: classla/wav2vec2-xls-r-parlaspeech-hr
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: xlsr-finetuned
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlsr-finetuned
This model is a fine-tuned version of [classla/wav2vec2-xls-r-parlaspeech-hr](https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1218
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:----:|
| No log | 1.0 | 1 | 14.0503 | 20.0 |
| 3.5057 | 2.0 | 2 | 5.3734 | 4.0 |
| 3.5057 | 3.0 | 3 | 2.8914 | 1.0 |
| 1.0014 | 4.0 | 4 | 2.1218 | 1.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|