--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab-main results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: tr split: test args: tr metrics: - name: Wer type: wer value: 0.3168215708303544 --- # wav2vec2-large-xls-r-300m-turkish-colab-main This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3764 - Wer: 0.3168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.822 | 3.67 | 400 | 0.6508 | 0.6687 | | 0.399 | 7.34 | 800 | 0.4276 | 0.4480 | | 0.1905 | 11.01 | 1200 | 0.3999 | 0.4225 | | 0.1249 | 14.68 | 1600 | 0.4302 | 0.3910 | | 0.0978 | 18.35 | 2000 | 0.3766 | 0.3682 | | 0.0773 | 22.02 | 2400 | 0.3877 | 0.3483 | | 0.0597 | 25.69 | 2800 | 0.3833 | 0.3268 | | 0.0467 | 29.36 | 3200 | 0.3764 | 0.3168 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1