File size: 1,889 Bytes
fbf03e2
ed716e3
fbf03e2
ed716e3
fbf03e2
 
751a32d
 
 
fbf03e2
 
 
 
 
 
 
 
 
 
ed716e3
fbf03e2
604227e
 
 
 
 
 
fbf03e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed716e3
405be0d
 
fbf03e2
 
 
604227e
fbf03e2
 
 
751a32d
 
604227e
 
 
 
fbf03e2
 
 
 
ded0611
ed716e3
ded0611
ed716e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: mit
base_model: VietAI/vit5-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: ViNormT5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ViNormT5

This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2594
- Bleu Score: 79.8663
- Precision: 58.4229
- Recall: 58.4229
- Gen Len: 12.7658
- Err: 58.4229

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu Score | Precision | Recall  | Gen Len | Err     |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:---------:|:-------:|:-------:|:-------:|
| 0.4715        | 1.0   | 838  | 0.2451          | 76.8709    | 49.1039   | 49.1039 | 12.8781 | 49.1039 |
| 0.1802        | 2.0   | 1676 | 0.2337          | 78.3434    | 53.8829   | 53.8829 | 12.7861 | 53.8829 |
| 0.081         | 3.0   | 2514 | 0.2327          | 79.3197    | 56.1529   | 56.1529 | 12.7706 | 56.1529 |
| 0.0365        | 4.0   | 3352 | 0.2594          | 79.8663    | 58.4229   | 58.4229 | 12.7658 | 58.4229 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0