File size: 1,688 Bytes
56f8873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35fa97e
56f8873
 
 
 
 
 
 
 
 
 
 
 
 
35fa97e
 
 
 
 
 
 
 
 
56f8873
 
 
 
35fa97e
 
56f8873
 
35fa97e
 
 
56f8873
 
35fa97e
 
56f8873
35fa97e
56f8873
35fa97e
56f8873
35fa97e
 
 
 
56f8873
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model:
- Sao10K/L3-8B-Stheno-v3.2
- Undi95/Meta-Llama-3-8B-hf
- ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.2
- O1-OPEN/OpenO1-LLama-8B-v0.1
library_name: transformers
tags:
- mergekit
- merge

---
# merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Undi95/Meta-Llama-3-8B-hf](https://huggingface.co/Undi95/Meta-Llama-3-8B-hf) as a base.

### Models Merged

The following models were included in the merge:
* [Sao10K/L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2)
* [ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.2](https://huggingface.co/ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.2)
* [O1-OPEN/OpenO1-LLama-8B-v0.1](https://huggingface.co/O1-OPEN/OpenO1-LLama-8B-v0.1)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
# Mergekit Configuration for Model Merge

# Base model (primary reference model)
base_model: Undi95/Meta-Llama-3-8B-hf

# Merge method (using TIES for intelligent merging)
merge_method: ties

# Specific model configurations
models:
  - model: Sao10K/L3-8B-Stheno-v3.2
    parameters:
      density: 0.4
      weight: 0.25

  - model: ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.2
    parameters:
      density: 0.5
      weight: 0.35

  - model: O1-OPEN/OpenO1-LLama-8B-v0.1
    parameters:
      density: 0.3
      weight: 0.4

# Merge parameters
parameters:
  normalize: true
  int8_mask: true
  dtype: 16  # Explicitly using 16-bit float representation

# Tokenizer source (use base model's tokenizer)
tokenizer_source: base
```