Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +1 -1
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1318.73 +/- 454.33
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 129260
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87a545ba4136ee946eba498f9aee1b2948040923c0fc5bddc6c1370ddd5ae3c4
|
3 |
size 129260
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -64,7 +64,7 @@
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
@@ -73,7 +73,7 @@
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
@@ -89,7 +89,7 @@
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c53979ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c53979f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c5397e040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c5397e0d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6c5397e160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6c5397e1f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6c5397e280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c5397e310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6c5397e3a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c5397e430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c5397e4c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c5397e550>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f6c53971e40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1678049822619937675,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL75hz872oa/IdIpv8HSAcA6Hye/bupdP2cjmL1+yMU+agLkv99WQj6sjCE9Snj5PtU7KT/Lb1M/GDtnv+vuDz9+pH0/n5KpQLnQQrjhxZ+8Nns3P9PBH0BaT/4/ctVBvv7ns7+uHp8+s8THv9MChT/nJdu/pzOcP5kGJT86VQS/jK9LPet3kT61kPE+O7KrPc4Km7+RhaW9bUW+vt5w/z1BnXy/ypP8vnjqLD95MY693KYhv1s5577hm5A/RiYVPn7iVL9ZDT6/Aj6avzPaZ72rIzY/rh6fPq0HJD8CW3a/yv7uvw4l7D+VEfs9L+yrv+95Pz/F2rU8AgmYP7YjDD8Bsd+/eSiwvFV1EL8nzO68o7o2v8UFaL2StcC8dvwEPUO39L8GQve8oiqUP6qInzxiGeq8+10MvQNWmr8qxI68qyM2P64enz6tByQ/0wKFPztHdT++LvI+VL9HP28iuz5jDze/Pajwvp5JIb4QcA6+Xnedv1bVPUAdxJo/2J8EQJlHDMBBGoM9ZScOv5jGLj9G4G0/9RhnP6GJlb+V1CG/BLcQvwrZFr8Fu4c/vk8NQP7ns7/N7k3As8THvwJbdr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAQLcK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+JrkPQAAAAAslOa/AAAAAJsMd70AAAAA06fZPwAAAADOsbE8AAAAAPSj9j8AAAAAHobOPQAAAAB3RQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5dndNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHe6MT0AAAAA6xwBwAAAAABM8m68AAAAAKKR5D8AAAAAHJcxPAAAAADmVuA/AAAAALDy+r0AAAAAv3b9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfKxzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICGd469AAAAAH+7878AAAAAC7IuPQAAAABEmfY/AAAAAB/hAz4AAAAAUXwAQAAAAACOGKS8AAAAAJUz7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuFZg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATIKXvAAAAAA9LO6/AAAAAKmwkT0AAAAALRDuPwAAAABhVxu9AAAAAPJN+j8AAAAAxsBYOwAAAABIGeW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsiOhsZYPqMAWyUTegDjAF0lEdArtVL8iwB53V9lChoBkdAmsd+w1R+B2gHTegDaAhHQK7fE5mRNh51fZQoaAZHQJ3C+MQ2/BZoB03oA2gIR0Cu4vbqhUR4dX2UKGgGR0CWh+Zr56+naAdN6ANoCEdAruabRlYlp3V9lChoBkdAnAbvsRg7YGgHTegDaAhHQK7m3V9Wp611fZQoaAZHQJraNshxHXpoB03oA2gIR0Cu7wRTbWVedX2UKGgGR0Cb0zraM72daAdN6ANoCEdArvF4NkOI7HV9lChoBkdAmoBUhRqGlGgHTegDaAhHQK70jVXFLnN1fZQoaAZHQJd2YMw1zhhoB03oA2gIR0Cu9MqIi1RcdX2UKGgGR0CZcIIZqEeyaAdN6ANoCEdArv9njp9qlHV9lChoBkdAnE96TwDvE2gHTegDaAhHQK8DLid8Rcx1fZQoaAZHQJpXPio86mxoB03oA2gIR0CvBksMRYigdX2UKGgGR0CWpRPbwjMWaAdN6ANoCEdArwaFvQ4S6HV9lChoBkdAl6U9pItlI2gHTegDaAhHQK8O0pF1B+p1fZQoaAZHQJs6cBvJiiJoB03oA2gIR0CvETjqfOD8dX2UKGgGR0CcpakEs8PnaAdN6ANoCEdArxRNg2IfsHV9lChoBkdAmrUO/UONHmgHTegDaAhHQK8UidK/VRV1fZQoaAZHQJqPXhLoOhFoB03oA2gIR0CvH8d8JD3NdX2UKGgGR0CcPAdHlOoHaAdN6ANoCEdAryKtB8hLXnV9lChoBkdAmfG2VVxS52gHTegDaAhHQK8lxJA+pwV1fZQoaAZHQJzVEeNkvsZoB03oA2gIR0CvJgV1W8yvdX2UKGgGR0CcniNSIgvEaAdN6ANoCEdAry5MQAdXDHV9lChoBkdAmO3Sr92ovWgHTegDaAhHQK8wu0hvBJt1fZQoaAZHQJlR7FERaoxoB03oA2gIR0CvM9/WMCLddX2UKGgGR0CZs5AWi1zAaAdN6ANoCEdArzQZ/qgRLHV9lChoBkdAm1zbgTAWSGgHTegDaAhHQK8//in5zo51fZQoaAZHQJzz9AiV0LdoB03oA2gIR0CvQmQ6hg3MdX2UKGgGR0CdMZq9XcQAaAdN6ANoCEdAr0V77oB7u3V9lChoBkdAmx5oDcM3ImgHTegDaAhHQK9Fu/t6X0J1fZQoaAZHQJiv55GBnSRoB03oA2gIR0CvTeThgmZ3dX2UKGgGR0CbwnSh8IAwaAdN6ANoCEdAr1BKQaJhv3V9lChoBkdAmbaTp5eJHmgHTegDaAhHQK9TWMZP2wp1fZQoaAZHQJzMtxbSqlxoB03oA2gIR0CvU5lFUhmodX2UKGgGR0CbtG5oGpuNaAdN6ANoCEdAr19puXNTtXV9lChoBkdAnGC5/oaDPGgHTegDaAhHQK9hyy0KJEZ1fZQoaAZHQJ3+jT3IuGtoB03oA2gIR0CvZOcuSOindX2UKGgGR0Cck1Kr7wazaAdN6ANoCEdAr2Us4T9KmXV9lChoBkdAmX0FxsEaEWgHTegDaAhHQK9tcHh0heR1fZQoaAZHQJqNCE0zj3poB03oA2gIR0Cvb9LM1TBJdX2UKGgGR0CZtYDm8ujAaAdN6ANoCEdAr3Niw6hg3XV9lChoBkdAmk/L2L5yl2gHTegDaAhHQK9zu4mTkhl1fZQoaAZHQJ5UpWbPQfJoB03oA2gIR0CvfyGvnr6ddX2UKGgGR0CaPfM1TBInaAdN6ANoCEdAr4GSqbSZ0HV9lChoBkdAnQ9u1fE4vWgHTegDaAhHQK+EqmJm/WV1fZQoaAZHQJ0pXjtG/etoB03oA2gIR0CvhOv5pJwsdX2UKGgGR0Cb1iFCswL3aAdN6ANoCEdAr40Zjz7MxHV9lChoBkdAmpFJ5E+gUWgHTegDaAhHQK+Pdyq+8Gt1fZQoaAZHQJvHilbeMydoB03oA2gIR0Cvk4127nPndX2UKGgGR0Cag2OearmyaAdN6ANoCEdAr5PmymhufnV9lChoBkdAnO9eWa+ev2gHTegDaAhHQK+elTOPeYV1fZQoaAZHQJo/tJ/XoTxoB03oA2gIR0CvoQmkN4JNdX2UKGgGR0CaVX2g3974aAdN6ANoCEdAr6QpuTA31nV9lChoBkdAmnqOAy2x6mgHTegDaAhHQK+kaeNDMNd1fZQoaAZHQJl1OR1X/5toB03oA2gIR0CvrLuavzOHdX2UKGgGR0CYx5EhJRO2aAdN6ANoCEdAr69RU3n6mHV9lChoBkdAkzugFs54nmgHTegDaAhHQK+z6VMVUMp1fZQoaAZHQJMFFHtnf2toB03oA2gIR0CvtEhi1AqvdX2UKGgGR0CUXuh37k4naAdN6ANoCEdAr75d0HQhOnV9lChoBkdAmjLrtVrAQGgHTegDaAhHQK/Ay3PzFuN1fZQoaAZHQJskw6Mir1doB03oA2gIR0Cvw9BfShJzdX2UKGgGR0CbyE0tyxRmaAdN6ANoCEdAr8QJ0hePaXV9lChoBkdAlQV24NI9T2gHTegDaAhHQK/MLAk9lmR1fZQoaAZHQJVKULThHb1oB03oA2gIR0Cvzzm3WnTBdX2UKGgGR0CQOUcc2itaaAdN6ANoCEdAr9P4u01IiHV9lChoBkdAkZxhBmf5DmgHTegDaAhHQK/UVlPJq7B1fZQoaAZHQJqxA7YChexoB03oA2gIR0Cv3aGgSOBEdX2UKGgGR0CUIdnLaEi/aAdN6ANoCEdAr+ACnUDuB3V9lChoBkdAlnHkWIoE0WgHTegDaAhHQK/jG3XqZ+h1fZQoaAZHQJlHhdIGyHFoB03oA2gIR0Cv41p0wJw9dX2UKGgGR0CbNmwY+B6KaAdN6ANoCEdAr+urxPO6d3V9lChoBkdAnH1WO+7DmGgHTegDaAhHQK/vOv+wTuh1fZQoaAZHQJ3xM9vCMxZoB03oA2gIR0Cv9DAzHjp+dX2UKGgGR0CZJsR0EHMVaAdN6ANoCEdAr/SOx8lXzXV9lChoBkdAmqcCM1jy4GgHTegDaAhHQK/9Ky9mHxl1fZQoaAZHQJnHQarFOwhoB03oA2gIR0Cv/4neSB9UdX2UKGgGR0CbHYjXWe6JaAdN6ANoCEdAsAFKudPLxXV9lChoBkdAnGKCOR1YAGgHTegDaAhHQLABaJQtSQ51fZQoaAZHQJ3S+gElme1oB03oA2gIR0CwBcfg3tKJdX2UKGgGR0Cb8z7Sy+pPaAdN6ANoCEdAsAeSjfvWpnV9lChoBkdAnIKLcbiqAGgHTegDaAhHQLAJ/4Irvst1fZQoaAZHQJxrVZaFEiNoB03oA2gIR0CwCh9W6shgdX2UKGgGR0B7gP/ffoA5aAdN6ANoCEdAsA5I6dUbUHV9lChoBkdAngOY64lQdmgHTegDaAhHQLAPewRGtp51fZQoaAZHQJxiM1EVnEloB03oA2gIR0CwEP5vUBn0dX2UKGgGR0CbiRuFpPAPaAdN6ANoCEdAsBEeGSIP9XV9lChoBkdAmc0LMC9ytGgHTegDaAhHQLAVyPbwjMV1fZQoaAZHQJoi7tXxOL1oB03oA2gIR0CwF6SYPXkHdX2UKGgGR0CaVbmrbQC0aAdN6ANoCEdAsBnLTspobnV9lChoBkdAmBZtKVY6n2gHTegDaAhHQLAZ6ZXMhX91fZQoaAZHQJhO3HFPznRoB03oA2gIR0CwHgUaAFxGdX2UKGgGR0CFyy3solUqaAdN6ANoCEdAsB80rd30PHV9lChoBkdAmJchhH9WIWgHTegDaAhHQLAgux6fJ3h1fZQoaAZHQIPMvEAHVwxoB03oA2gIR0CwINjlHSWrdX2UKGgGR0CZ1Kj2SMcZaAdN6ANoCEdAsCXszuWrwXV9lChoBkdAj8aZ3Tuv2WgHTegDaAhHQLAn0VpsXSB1fZQoaAZHQJbxs8gZCOZoB03oA2gIR0CwKYx3A2ycdX2UKGgGR0CM9IEJ0GNaaAdN6ANoCEdAsCmrcer+53V9lChoBkdAkf1Tkhib2GgHTegDaAhHQLAt2+o99tx1fZQoaAZHQIY05QpF1CBoB03oA2gIR0CwLxec+aBqdX2UKGgGR0CDPzEehf0FaAdN6ANoCEdAsDCev0RODnVlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5304788966178521d21da41602d0c3a1e9a4472a2d73dc01bc23c023b20cb429
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75497774aa3ac8f58aef87aef693fb7fa92eba99e4fe3b7841692ba535603dbb
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45f3214e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45f3214ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45f3214f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45f319b040>", "_build": "<function ActorCriticPolicy._build at 0x7f45f319b0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f45f319b160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f45f319b1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45f319b280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45f319b310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45f319b3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45f319b430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45f319b4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45f3212990>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678044498316648137, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB2S1r5LMxHA52AOwAXofr/1LFI8Z64qv+Pr8z6u1ya/AfgRP87nkr99czA/cz0Cv2Bxtb4bgxg/gHD/PabscT9wtKc/k9hBvTNEFz+/D7+8mRo3QBn48b+9LIY/N/7QP2yegD/ozwA/In8QP3T1iL/X9v4+IAPQPmIT5j5FOOW+UwIxv566Aj8maeg97d4rQGnBFD+icNK8xT/KPbwylb/cx7Y/3hhEQCQn+7+nQ7I/JZUQPwog9T/BgxQ/YZmdPA3bNL8/Wmw+iWyovkIZaz9snoA/z2L+vwPG4r8iQW8/4MXIPnj6g7+u+fw99ds8PtIzDr88EEo/yfGnPvuDkr81zQs/vd/EvzKv9T71MaA+WcaaPo7INj773qI+pUC3Pwxrpz+mcgy9nN8UP1kO+jrb4ju/sjvyv4K2FT8TYJg+rsR+v+jPAD8DxuK/IkFvP7sLNL/+hTi/1IOrPgpeML9l8QI/1SSnPzla1rturdu+T1EVP1en7bsE+Sk9WpZTP7p4KT+V10A/TvJlP8VFVr6n4mM/iK3iP1uEFD9pHHU8RZPWPBw7sj4OyAo+2arIPWyegD/ozwA/In8QPyJBbz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB0c5c2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQHDNvQAAAAD4d9y/AAAAAIaAjr0AAAAA8k/qPwAAAABUHvA9AAAAAIRG7T8AAAAAyu48vQAAAAAp0Pu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNn1UD0AAAAAN3fwvwAAAABTM5w9AAAAAMFh6z8AAAAA5pYPPgAAAADmLOo/AAAAAJ1fzb0AAAAAKIj4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC25LjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAeb8g7AAAAAMsDAMAAAAAAoN6MPQAAAAC4Jfc/AAAAAFQ6rbwAAAAAoLjbPwAAAAAFqI+9AAAAADSn7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/3Qw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu18CvQAAAAA2hfK/AAAAAHgSED4AAAAAhpXbPwAAAAD7IZy8AAAAAIG7/D8AAAAAuUONPQAAAAD5Cu6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ+qJsenyd6MAWyUTegDjAF0lEdAruDjxTbWVnV9lChoBkdAnajIdELH/GgHTegDaAhHQK7j5k8zQ/p1fZQoaAZHQJvDFKf4AS5oB03oA2gIR0Cu7AlSsKb8dX2UKGgGR0CfxcC2+fyxaAdN6ANoCEdAru51iQT24HV9lChoBkdAnV+YP07KaGgHTegDaAhHQK7wjmFrVON1fZQoaAZHQJ7extdiUgVoB03oA2gIR0Cu9Xf+CK77dX2UKGgGR0CgfVuNPxhEaAdN6ANoCEdArv3568g6l3V9lChoBkdAoM+v+0gKW2gHTegDaAhHQK7/epPykKx1fZQoaAZHQKB0O7eVLSNoB03oA2gIR0CvAMmyPdVOdX2UKGgGR0CgglSsS00FaAdN6ANoCEdArwO7WRRuTHV9lChoBkdAoGFJG8VYZGgHTegDaAhHQK8MTTUAks11fZQoaAZHQJ/RLaXa8HxoB03oA2gIR0CvDryv9tMxdX2UKGgGR0CgFOSGahHtaAdN6ANoCEdArxEHP5YYBXV9lChoBkdAn8ZrRSgoPWgHTegDaAhHQK8WLphWo3t1fZQoaAZHQJ7elKraM75oB03oA2gIR0CvHgbuDzy0dX2UKGgGR0CgWVBUipvQaAdN6ANoCEdArx+NzKcNIHV9lChoBkdAnylFVHWjGmgHTegDaAhHQK8g4btqpLp1fZQoaAZHQJ+DY/LTx5NoB03oA2gIR0CvI8yAH3UQdX2UKGgGR0CgboOX/o7naAdN6ANoCEdAryzd0V8CxXV9lChoBkdAoFtujTKDCmgHTegDaAhHQK8vWDSPU8V1fZQoaAZHQJ7shda+vhZoB03oA2gIR0CvMaCyprDZdX2UKGgGR0CgRnw2VE/jaAdN6ANoCEdArzZT2JzkqHV9lChoBkdAoOBh9y925mgHTegDaAhHQK8+WA7Pppx1fZQoaAZHQKDm5ENOM2poB03oA2gIR0CvP/YYR/VidX2UKGgGR0Cg/zcYIjW1aAdN6ANoCEdAr0FY/mknC3V9lChoBkdAoKOJPsRg7mgHTegDaAhHQK9EaSV4X411fZQoaAZHQKD9uNAC4jNoB03oA2gIR0CvTdkhRqGldX2UKGgGR0Cfgecxj8UFaAdN6ANoCEdAr1B3FBIFvHV9lChoBkdAn2vIecQRPGgHTegDaAhHQK9SrRjz7Mx1fZQoaAZHQKGaPEjxCppoB03oA2gIR0CvVrfvv0AcdX2UKGgGR0CgA0TwtrbhaAdN6ANoCEdAr18NYnv2G3V9lChoBkdAnviuhbnoxGgHTegDaAhHQK9gr1xsEaF1fZQoaAZHQKBb9NorWiFoB03oA2gIR0CvYgvy9VWCdX2UKGgGR0CeO58QqZtvaAdN6ANoCEdAr2UqMPz4DnV9lChoBkdAoHm7neSB9WgHTegDaAhHQK9v5YUWVNZ1fZQoaAZHQJ+LF+WnjyZoB03oA2gIR0Cvcqz+m3vydX2UKGgGR0CfiOiLVFx5aAdN6ANoCEdAr3TqpHZsbnV9lChoBkdAnfhJUcXFcmgHTegDaAhHQK9366nR9gF1fZQoaAZHQKBp+482aUloB03oA2gIR0CvgCNjCpFTdX2UKGgGR0CglBX5vcagaAdN6ANoCEdAr4GmstCiRHV9lChoBkdAoNBHFJg9eWgHTegDaAhHQK+DB7TDwYt1fZQoaAZHQKB2XPDYRNBoB03oA2gIR0CvhgvMKTjedX2UKGgGR0Cf9kIEKVpsaAdN6ANoCEdAr5IFD8cdYHV9lChoBkdAoQIhWPtD2WgHTegDaAhHQK+UhOoo/iZ1fZQoaAZHQKCddqu8sc1oB03oA2gIR0CvleqBun/DdX2UKGgGR0Cg18P7N0NjaAdN6ANoCEdAr5kaZKFqSHV9lChoBkdAoOfKzzErG2gHTegDaAhHQK+hDkupS751fZQoaAZHQKGOc8W9DhNoB03oA2gIR0CvopI4VARkdX2UKGgGR0Cg/+UtRNypaAdN6ANoCEdAr6Pw2dd3S3V9lChoBkdAoTHth3JPqWgHTegDaAhHQK+m98IAwPB1fZQoaAZHQKFmKI1tO21oB03oA2gIR0Cvsy256MR6dX2UKGgGR0CgrwHJLdvbaAdN6ANoCEdAr7Tx4jbBXXV9lChoBkdAoEXvBUJfIGgHTegDaAhHQK+2bha1Tit1fZQoaAZHQKDk7sByS3doB03oA2gIR0CvuXL8rI5pdX2UKGgGR0CgVizkIX0oaAdN6ANoCEdAr8FtwiqyW3V9lChoBkdAnWmtWZJCjWgHTegDaAhHQK/DFPO6d2B1fZQoaAZHQJ+Z64x1xKhoB03oA2gIR0CvxI7Nr0rcdX2UKGgGR0CcA8ltj0+UaAdN6ANoCEdAr8fywW3z+XV9lChoBkdAn6HgSvkilmgHTegDaAhHQK/UJy7PIGR1fZQoaAZHQKDb4ZvUBn1oB03oA2gIR0Cv1c56lchUdX2UKGgGR0ChMAbKaG5+aAdN6ANoCEdAr9ctZ5iVjnV9lChoBkdAnsX+DaoMrmgHTegDaAhHQK/aK4//vOR1fZQoaAZHQKBAfL9uP3loB03oA2gIR0Cv4jWC2+fzdX2UKGgGR0CbcWQD3dsSaAdN6ANoCEdAr+PUmdAgPnV9lChoBkdAn1aeH31zyWgHTegDaAhHQK/lMyj59E11fZQoaAZHQJ9Sm5nUUfxoB03oA2gIR0Cv6QJH7P6bdX2UKGgGR0CgBBMNUfgaaAdN6ANoCEdAr/TQYpDu0HV9lChoBkdAnC3P8/D+BGgHTegDaAhHQK/2a3XI2fl1fZQoaAZHQJ7sf0SRKYloB03oA2gIR0Cv99jIq9XcdX2UKGgGR0Cet6fhddE9aAdN6ANoCEdAr/ryv3ai9XV9lChoBkdAnxDYISlFdGgHTegDaAhHQLABkpiZv1l1fZQoaAZHQKBPrRUFSsNoB03oA2gIR0CwAmkKeCkHdX2UKGgGR0CgMNiaZx7zaAdN6ANoCEdAsAMjKuB+WnV9lChoBkdAn+rdwFTvRmgHTegDaAhHQLAFdx5LRKJ1fZQoaAZHQJ0Qi7tiQT5oB03oA2gIR0CwCrPe+Eh8dX2UKGgGR0CdkvuNgjQiaAdN6ANoCEdAsAt5khA4XHV9lChoBkdAmm2jo2XLNmgHTegDaAhHQLAMKP6KtPp1fZQoaAZHQJ0P455qubJoB03oA2gIR0CwDax1DBuXdX2UKGgGR0Cewt6jFhoeaAdN6ANoCEdAsBGxwQ176nV9lChoBkdAnqzvViF0xWgHTegDaAhHQLASecTakAR1fZQoaAZHQJ9xqsOoYN1oB03oA2gIR0CwE4Ttb9qDdX2UKGgGR0Cgo4AWac7RaAdN6ANoCEdAsBXwBbOeKHV9lChoBkdAn88FHFxXGWgHTegDaAhHQLAaxoKUmlZ1fZQoaAZHQJ03wrCm/FloB03oA2gIR0CwG46PsAvMdX2UKGgGR0Ce3YooNNJwaAdN6ANoCEdAsBw7qqwQlXV9lChoBkdAnifaKHfuTmgHTegDaAhHQLAds2mpEQZ1fZQoaAZHQJ5xwsiB5HFoB03oA2gIR0CwIcJ/b0vodX2UKGgGR0CclTW9US7HaAdN6ANoCEdAsCLIR8MNMHV9lChoBkdAn5SeKbayr2gHTegDaAhHQLAj1TKT0QN1fZQoaAZHQJ+QuBClabFoB03oA2gIR0CwJlP9pAUtdX2UKGgGR0CgfcRL0z0paAdN6ANoCEdAsCrxtALRbHV9lChoBkdAoACF9ORDC2gHTegDaAhHQLArvSk0rLB1fZQoaAZHQKADOvi97F9oB03oA2gIR0CwLHPAO8TSdX2UKGgGR0CYr4F6Rhc8aAdN6ANoCEdAsC36vdM0xnV9lChoBkdAnyHkn9ehPGgHTegDaAhHQLAyFTzND+l1fZQoaAZHQKBwgHsTnJVoB03oA2gIR0CwM0qufVZtdX2UKGgGR0CgTreERJ2/aAdN6ANoCEdAsDRcJVsDXHV9lChoBkdAoAS3VqesgmgHTegDaAhHQLA26NHYpUh1fZQoaAZHQKARoBOHnEFoB03oA2gIR0CwOxRJd0JXdX2UKGgGR0ChB97g88s+aAdN6ANoCEdAsDvgGB4D93VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c53979ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c53979f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c5397e040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c5397e0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f6c5397e160>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c5397e1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6c5397e280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c5397e310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c5397e3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c5397e430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c5397e4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c5397e550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6c53971e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678049822619937675, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAL75hz872oa/IdIpv8HSAcA6Hye/bupdP2cjmL1+yMU+agLkv99WQj6sjCE9Snj5PtU7KT/Lb1M/GDtnv+vuDz9+pH0/n5KpQLnQQrjhxZ+8Nns3P9PBH0BaT/4/ctVBvv7ns7+uHp8+s8THv9MChT/nJdu/pzOcP5kGJT86VQS/jK9LPet3kT61kPE+O7KrPc4Km7+RhaW9bUW+vt5w/z1BnXy/ypP8vnjqLD95MY693KYhv1s5577hm5A/RiYVPn7iVL9ZDT6/Aj6avzPaZ72rIzY/rh6fPq0HJD8CW3a/yv7uvw4l7D+VEfs9L+yrv+95Pz/F2rU8AgmYP7YjDD8Bsd+/eSiwvFV1EL8nzO68o7o2v8UFaL2StcC8dvwEPUO39L8GQve8oiqUP6qInzxiGeq8+10MvQNWmr8qxI68qyM2P64enz6tByQ/0wKFPztHdT++LvI+VL9HP28iuz5jDze/Pajwvp5JIb4QcA6+Xnedv1bVPUAdxJo/2J8EQJlHDMBBGoM9ZScOv5jGLj9G4G0/9RhnP6GJlb+V1CG/BLcQvwrZFr8Fu4c/vk8NQP7ns7/N7k3As8THvwJbdr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAQLcK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+JrkPQAAAAAslOa/AAAAAJsMd70AAAAA06fZPwAAAADOsbE8AAAAAPSj9j8AAAAAHobOPQAAAAB3RQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5dndNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHe6MT0AAAAA6xwBwAAAAABM8m68AAAAAKKR5D8AAAAAHJcxPAAAAADmVuA/AAAAALDy+r0AAAAAv3b9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALfKxzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICGd469AAAAAH+7878AAAAAC7IuPQAAAABEmfY/AAAAAB/hAz4AAAAAUXwAQAAAAACOGKS8AAAAAJUz7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuFZg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATIKXvAAAAAA9LO6/AAAAAKmwkT0AAAAALRDuPwAAAABhVxu9AAAAAPJN+j8AAAAAxsBYOwAAAABIGeW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsiOhsZYPqMAWyUTegDjAF0lEdArtVL8iwB53V9lChoBkdAmsd+w1R+B2gHTegDaAhHQK7fE5mRNh51fZQoaAZHQJ3C+MQ2/BZoB03oA2gIR0Cu4vbqhUR4dX2UKGgGR0CWh+Zr56+naAdN6ANoCEdAruabRlYlp3V9lChoBkdAnAbvsRg7YGgHTegDaAhHQK7m3V9Wp611fZQoaAZHQJraNshxHXpoB03oA2gIR0Cu7wRTbWVedX2UKGgGR0Cb0zraM72daAdN6ANoCEdArvF4NkOI7HV9lChoBkdAmoBUhRqGlGgHTegDaAhHQK70jVXFLnN1fZQoaAZHQJd2YMw1zhhoB03oA2gIR0Cu9MqIi1RcdX2UKGgGR0CZcIIZqEeyaAdN6ANoCEdArv9njp9qlHV9lChoBkdAnE96TwDvE2gHTegDaAhHQK8DLid8Rcx1fZQoaAZHQJpXPio86mxoB03oA2gIR0CvBksMRYigdX2UKGgGR0CWpRPbwjMWaAdN6ANoCEdArwaFvQ4S6HV9lChoBkdAl6U9pItlI2gHTegDaAhHQK8O0pF1B+p1fZQoaAZHQJs6cBvJiiJoB03oA2gIR0CvETjqfOD8dX2UKGgGR0CcpakEs8PnaAdN6ANoCEdArxRNg2IfsHV9lChoBkdAmrUO/UONHmgHTegDaAhHQK8UidK/VRV1fZQoaAZHQJqPXhLoOhFoB03oA2gIR0CvH8d8JD3NdX2UKGgGR0CcPAdHlOoHaAdN6ANoCEdAryKtB8hLXnV9lChoBkdAmfG2VVxS52gHTegDaAhHQK8lxJA+pwV1fZQoaAZHQJzVEeNkvsZoB03oA2gIR0CvJgV1W8yvdX2UKGgGR0CcniNSIgvEaAdN6ANoCEdAry5MQAdXDHV9lChoBkdAmO3Sr92ovWgHTegDaAhHQK8wu0hvBJt1fZQoaAZHQJlR7FERaoxoB03oA2gIR0CvM9/WMCLddX2UKGgGR0CZs5AWi1zAaAdN6ANoCEdArzQZ/qgRLHV9lChoBkdAm1zbgTAWSGgHTegDaAhHQK8//in5zo51fZQoaAZHQJzz9AiV0LdoB03oA2gIR0CvQmQ6hg3MdX2UKGgGR0CdMZq9XcQAaAdN6ANoCEdAr0V77oB7u3V9lChoBkdAmx5oDcM3ImgHTegDaAhHQK9Fu/t6X0J1fZQoaAZHQJiv55GBnSRoB03oA2gIR0CvTeThgmZ3dX2UKGgGR0CbwnSh8IAwaAdN6ANoCEdAr1BKQaJhv3V9lChoBkdAmbaTp5eJHmgHTegDaAhHQK9TWMZP2wp1fZQoaAZHQJzMtxbSqlxoB03oA2gIR0CvU5lFUhmodX2UKGgGR0CbtG5oGpuNaAdN6ANoCEdAr19puXNTtXV9lChoBkdAnGC5/oaDPGgHTegDaAhHQK9hyy0KJEZ1fZQoaAZHQJ3+jT3IuGtoB03oA2gIR0CvZOcuSOindX2UKGgGR0Cck1Kr7wazaAdN6ANoCEdAr2Us4T9KmXV9lChoBkdAmX0FxsEaEWgHTegDaAhHQK9tcHh0heR1fZQoaAZHQJqNCE0zj3poB03oA2gIR0Cvb9LM1TBJdX2UKGgGR0CZtYDm8ujAaAdN6ANoCEdAr3Niw6hg3XV9lChoBkdAmk/L2L5yl2gHTegDaAhHQK9zu4mTkhl1fZQoaAZHQJ5UpWbPQfJoB03oA2gIR0CvfyGvnr6ddX2UKGgGR0CaPfM1TBInaAdN6ANoCEdAr4GSqbSZ0HV9lChoBkdAnQ9u1fE4vWgHTegDaAhHQK+EqmJm/WV1fZQoaAZHQJ0pXjtG/etoB03oA2gIR0CvhOv5pJwsdX2UKGgGR0Cb1iFCswL3aAdN6ANoCEdAr40Zjz7MxHV9lChoBkdAmpFJ5E+gUWgHTegDaAhHQK+Pdyq+8Gt1fZQoaAZHQJvHilbeMydoB03oA2gIR0Cvk4127nPndX2UKGgGR0Cag2OearmyaAdN6ANoCEdAr5PmymhufnV9lChoBkdAnO9eWa+ev2gHTegDaAhHQK+elTOPeYV1fZQoaAZHQJo/tJ/XoTxoB03oA2gIR0CvoQmkN4JNdX2UKGgGR0CaVX2g3974aAdN6ANoCEdAr6QpuTA31nV9lChoBkdAmnqOAy2x6mgHTegDaAhHQK+kaeNDMNd1fZQoaAZHQJl1OR1X/5toB03oA2gIR0CvrLuavzOHdX2UKGgGR0CYx5EhJRO2aAdN6ANoCEdAr69RU3n6mHV9lChoBkdAkzugFs54nmgHTegDaAhHQK+z6VMVUMp1fZQoaAZHQJMFFHtnf2toB03oA2gIR0CvtEhi1AqvdX2UKGgGR0CUXuh37k4naAdN6ANoCEdAr75d0HQhOnV9lChoBkdAmjLrtVrAQGgHTegDaAhHQK/Ay3PzFuN1fZQoaAZHQJskw6Mir1doB03oA2gIR0Cvw9BfShJzdX2UKGgGR0CbyE0tyxRmaAdN6ANoCEdAr8QJ0hePaXV9lChoBkdAlQV24NI9T2gHTegDaAhHQK/MLAk9lmR1fZQoaAZHQJVKULThHb1oB03oA2gIR0Cvzzm3WnTBdX2UKGgGR0CQOUcc2itaaAdN6ANoCEdAr9P4u01IiHV9lChoBkdAkZxhBmf5DmgHTegDaAhHQK/UVlPJq7B1fZQoaAZHQJqxA7YChexoB03oA2gIR0Cv3aGgSOBEdX2UKGgGR0CUIdnLaEi/aAdN6ANoCEdAr+ACnUDuB3V9lChoBkdAlnHkWIoE0WgHTegDaAhHQK/jG3XqZ+h1fZQoaAZHQJlHhdIGyHFoB03oA2gIR0Cv41p0wJw9dX2UKGgGR0CbNmwY+B6KaAdN6ANoCEdAr+urxPO6d3V9lChoBkdAnH1WO+7DmGgHTegDaAhHQK/vOv+wTuh1fZQoaAZHQJ3xM9vCMxZoB03oA2gIR0Cv9DAzHjp+dX2UKGgGR0CZJsR0EHMVaAdN6ANoCEdAr/SOx8lXzXV9lChoBkdAmqcCM1jy4GgHTegDaAhHQK/9Ky9mHxl1fZQoaAZHQJnHQarFOwhoB03oA2gIR0Cv/4neSB9UdX2UKGgGR0CbHYjXWe6JaAdN6ANoCEdAsAFKudPLxXV9lChoBkdAnGKCOR1YAGgHTegDaAhHQLABaJQtSQ51fZQoaAZHQJ3S+gElme1oB03oA2gIR0CwBcfg3tKJdX2UKGgGR0Cb8z7Sy+pPaAdN6ANoCEdAsAeSjfvWpnV9lChoBkdAnIKLcbiqAGgHTegDaAhHQLAJ/4Irvst1fZQoaAZHQJxrVZaFEiNoB03oA2gIR0CwCh9W6shgdX2UKGgGR0B7gP/ffoA5aAdN6ANoCEdAsA5I6dUbUHV9lChoBkdAngOY64lQdmgHTegDaAhHQLAPewRGtp51fZQoaAZHQJxiM1EVnEloB03oA2gIR0CwEP5vUBn0dX2UKGgGR0CbiRuFpPAPaAdN6ANoCEdAsBEeGSIP9XV9lChoBkdAmc0LMC9ytGgHTegDaAhHQLAVyPbwjMV1fZQoaAZHQJoi7tXxOL1oB03oA2gIR0CwF6SYPXkHdX2UKGgGR0CaVbmrbQC0aAdN6ANoCEdAsBnLTspobnV9lChoBkdAmBZtKVY6n2gHTegDaAhHQLAZ6ZXMhX91fZQoaAZHQJhO3HFPznRoB03oA2gIR0CwHgUaAFxGdX2UKGgGR0CFyy3solUqaAdN6ANoCEdAsB80rd30PHV9lChoBkdAmJchhH9WIWgHTegDaAhHQLAgux6fJ3h1fZQoaAZHQIPMvEAHVwxoB03oA2gIR0CwINjlHSWrdX2UKGgGR0CZ1Kj2SMcZaAdN6ANoCEdAsCXszuWrwXV9lChoBkdAj8aZ3Tuv2WgHTegDaAhHQLAn0VpsXSB1fZQoaAZHQJbxs8gZCOZoB03oA2gIR0CwKYx3A2ycdX2UKGgGR0CM9IEJ0GNaaAdN6ANoCEdAsCmrcer+53V9lChoBkdAkf1Tkhib2GgHTegDaAhHQLAt2+o99tx1fZQoaAZHQIY05QpF1CBoB03oA2gIR0CwLxec+aBqdX2UKGgGR0CDPzEehf0FaAdN6ANoCEdAsDCev0RODnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d7b4693ce767587802c65eb1f0c0e06e0f0a8c77809ee5c4c958a4e2696f78a
|
3 |
+
size 1219808
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1318.7306792430813, "std_reward": 454.3258572064537, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T22:33:00.349671"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6485bd138eb187ae84cc2ff104c6fa7a123ef7a156f30730ac9d64df7948e01
|
3 |
size 2136
|