Create README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,250 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
widget:
|
8 |
+
structuredData:
|
9 |
+
attribute_0:
|
10 |
+
- material_7
|
11 |
+
- material_7
|
12 |
+
- material_7
|
13 |
+
attribute_1:
|
14 |
+
- material_8
|
15 |
+
- material_8
|
16 |
+
- material_6
|
17 |
+
attribute_2:
|
18 |
+
- 5
|
19 |
+
- 5
|
20 |
+
- 6
|
21 |
+
attribute_3:
|
22 |
+
- 8
|
23 |
+
- 8
|
24 |
+
- 9
|
25 |
+
loading:
|
26 |
+
- 154.02
|
27 |
+
- 108.73
|
28 |
+
- 99.84
|
29 |
+
measurement_0:
|
30 |
+
- 14
|
31 |
+
- 4
|
32 |
+
- 6
|
33 |
+
measurement_1:
|
34 |
+
- 6
|
35 |
+
- 7
|
36 |
+
- 7
|
37 |
+
measurement_10:
|
38 |
+
- 16.637
|
39 |
+
- 16.207
|
40 |
+
- 17.17
|
41 |
+
measurement_11:
|
42 |
+
- 20.719
|
43 |
+
- 20.058
|
44 |
+
- 20.858
|
45 |
+
measurement_12:
|
46 |
+
- 12.824
|
47 |
+
- 11.898
|
48 |
+
- 10.968
|
49 |
+
measurement_13:
|
50 |
+
- 16.067
|
51 |
+
- 13.871
|
52 |
+
- 16.448
|
53 |
+
measurement_14:
|
54 |
+
- 15.181
|
55 |
+
- 14.266
|
56 |
+
- 15.6
|
57 |
+
measurement_15:
|
58 |
+
- 18.546
|
59 |
+
- 15.734
|
60 |
+
- 14.637
|
61 |
+
measurement_16:
|
62 |
+
- 19.402
|
63 |
+
- 16.886
|
64 |
+
- 13.86
|
65 |
+
measurement_17:
|
66 |
+
- 643.086
|
67 |
+
- 642.533
|
68 |
+
- 673.545
|
69 |
+
measurement_2:
|
70 |
+
- 6
|
71 |
+
- 9
|
72 |
+
- 6
|
73 |
+
measurement_3:
|
74 |
+
- 19.532
|
75 |
+
- 18.128
|
76 |
+
- NaN
|
77 |
+
measurement_4:
|
78 |
+
- 11.017
|
79 |
+
- 11.866
|
80 |
+
- 10.064
|
81 |
+
measurement_5:
|
82 |
+
- 15.639
|
83 |
+
- 17.891
|
84 |
+
- 16.287
|
85 |
+
measurement_6:
|
86 |
+
- 16.709
|
87 |
+
- 20.302
|
88 |
+
- 17.445
|
89 |
+
measurement_7:
|
90 |
+
- 10.057
|
91 |
+
- NaN
|
92 |
+
- 12.117
|
93 |
+
measurement_8:
|
94 |
+
- 20.201
|
95 |
+
- 18.148
|
96 |
+
- 20.659
|
97 |
+
measurement_9:
|
98 |
+
- 11.106
|
99 |
+
- 10.221
|
100 |
+
- 11.999
|
101 |
+
product_code:
|
102 |
+
- C
|
103 |
+
- C
|
104 |
+
- E
|
105 |
---
|
106 |
+
|
107 |
+
# Model description
|
108 |
+
|
109 |
+
This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset.
|
110 |
+
|
111 |
+
## Intended uses & limitations
|
112 |
+
|
113 |
+
This model is not ready to be used in production.
|
114 |
+
|
115 |
+
## Training Procedure
|
116 |
+
|
117 |
+
### Hyperparameters
|
118 |
+
|
119 |
+
The model is trained with below hyperparameters.
|
120 |
+
|
121 |
+
<details>
|
122 |
+
<summary> Click to expand </summary>
|
123 |
+
|
124 |
+
| Hyperparameter | Value |
|
125 |
+
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
126 |
+
| memory | |
|
127 |
+
| steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] |
|
128 |
+
| verbose | False |
|
129 |
+
| transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),
|
130 |
+
'attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])]) |
|
131 |
+
| model | DecisionTreeClassifier(max_depth=4) |
|
132 |
+
| transformation__n_jobs | |
|
133 |
+
| transformation__remainder | drop |
|
134 |
+
| transformation__sparse_threshold | 0.3 |
|
135 |
+
| transformation__transformer_weights | |
|
136 |
+
| transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(),['product_code'])]
|
137 |
+
|
|
138 |
+
| transformation__verbose | False |
|
139 |
+
| transformation__verbose_feature_names_out | True |
|
140 |
+
| transformation__loading_missing_value_imputer | SimpleImputer() |
|
141 |
+
| transformation__numerical_missing_value_imputer | SimpleImputer() |
|
142 |
+
| transformation__attribute_0_encoder | OneHotEncoder() |
|
143 |
+
| transformation__attribute_1_encoder | OneHotEncoder() |
|
144 |
+
| transformation__product_code_encoder | OneHotEncoder() |
|
145 |
+
| transformation__loading_missing_value_imputer__add_indicator | False |
|
146 |
+
| transformation__loading_missing_value_imputer__copy | True |
|
147 |
+
| transformation__loading_missing_value_imputer__fill_value | |
|
148 |
+
| transformation__loading_missing_value_imputer__missing_values | nan |
|
149 |
+
| transformation__loading_missing_value_imputer__strategy | mean |
|
150 |
+
| transformation__loading_missing_value_imputer__verbose | 0 |
|
151 |
+
| transformation__numerical_missing_value_imputer__add_indicator | False |
|
152 |
+
| transformation__numerical_missing_value_imputer__copy | True |
|
153 |
+
| transformation__numerical_missing_value_imputer__fill_value | |
|
154 |
+
| transformation__numerical_missing_value_imputer__missing_values | nan |
|
155 |
+
| transformation__numerical_missing_value_imputer__strategy | mean |
|
156 |
+
| transformation__numerical_missing_value_imputer__verbose | 0 |
|
157 |
+
| transformation__attribute_0_encoder__categories | auto |
|
158 |
+
| transformation__attribute_0_encoder__drop | |
|
159 |
+
| transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> |
|
160 |
+
| transformation__attribute_0_encoder__handle_unknown | error |
|
161 |
+
| transformation__attribute_0_encoder__sparse | True |
|
162 |
+
| transformation__attribute_1_encoder__categories | auto |
|
163 |
+
| transformation__attribute_1_encoder__drop | |
|
164 |
+
| transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> |
|
165 |
+
| transformation__attribute_1_encoder__handle_unknown | error |
|
166 |
+
| transformation__attribute_1_encoder__sparse | True |
|
167 |
+
| transformation__product_code_encoder__categories | auto |
|
168 |
+
| transformation__product_code_encoder__drop | |
|
169 |
+
| transformation__product_code_encoder__dtype | <class 'numpy.float64'> |
|
170 |
+
| transformation__product_code_encoder__handle_unknown | error |
|
171 |
+
| transformation__product_code_encoder__sparse | True |
|
172 |
+
| model__ccp_alpha | 0.0 |
|
173 |
+
| model__class_weight | |
|
174 |
+
| model__criterion | gini |
|
175 |
+
| model__max_depth | 4 |
|
176 |
+
| model__max_features | |
|
177 |
+
| model__max_leaf_nodes | |
|
178 |
+
| model__min_impurity_decrease | 0.0 |
|
179 |
+
| model__min_samples_leaf | 1 |
|
180 |
+
| model__min_samples_split | 2 |
|
181 |
+
| model__min_weight_fraction_leaf | 0.0 |
|
182 |
+
| model__random_state | |
|
183 |
+
| model__splitter | best |
|
184 |
+
|
185 |
+
</details>
|
186 |
+
|
187 |
+
### Model Plot
|
188 |
+
|
189 |
+
The model plot is below.
|
190 |
+
|
191 |
+
<style>#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f {color: black;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f pre{padding: 0;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable {background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator:hover {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-item {z-index: 1;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:only-child::after {width: 0;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-text-repr-fallback {display: none;}</style><div id="sk-b8914d13-cacb-404b-89fd-48f0ed8d671f" class="sk-top-container" width="100%"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden width="100%"><div class="sk-item sk-dashed-wrapped" width="100%"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="fe201304-214c-493b-8896-11cea0894f6e" type="checkbox" ><label for="fe201304-214c-493b-8896-11cea0894f6e" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="19136b49-925c-40a2-b4d1-37039bb014a9" type="checkbox" ><label for="19136b49-925c-40a2-b4d1-37039bb014a9" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c8ec7f92-b10a-41e7-b673-1239572ea00e" type="checkbox" ><label for="c8ec7f92-b10a-41e7-b673-1239572ea00e" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="70fec50e-9c49-4818-a58f-ef8de932035c" type="checkbox" ><label for="70fec50e-9c49-4818-a58f-ef8de932035c" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ac8a6641-4222-4b12-b691-928201d9af73" type="checkbox" ><label for="ac8a6641-4222-4b12-b691-928201d9af73" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="a14b63c1-fecb-445e-9a74-8229a531f0ea" type="checkbox" ><label for="a14b63c1-fecb-445e-9a74-8229a531f0ea" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="80227cfc-e001-4c0d-b495-e4e0631a49d5" type="checkbox" ><label for="80227cfc-e001-4c0d-b495-e4e0631a49d5" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>['attribute_0']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c52efc0c-08b7-467a-a0a1-f07cb6cecebc" type="checkbox" ><label for="c52efc0c-08b7-467a-a0a1-f07cb6cecebc" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6da0ab07-3d41-459c-a8a6-a56960b775f2" type="checkbox" ><label for="6da0ab07-3d41-459c-a8a6-a56960b775f2" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>['attribute_1']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b515fbe5-466a-4eb7-84d9-35227a1e862a" type="checkbox" ><label for="b515fbe5-466a-4eb7-84d9-35227a1e862a" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container" width="100%"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="72c4b8e6-3110-486f-8b33-a7db1f5e822f" type="checkbox" ><label for="72c4b8e6-3110-486f-8b33-a7db1f5e822f" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>['product_code']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f3bfb5a1-317d-4ff4-8dd0-804ef1d7fd61" type="checkbox" ><label for="f3bfb5a1-317d-4ff4-8dd0-804ef1d7fd61" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="dbcb65f9-3068-4263-9c1c-2e6413804681" type="checkbox" ><label for="dbcb65f9-3068-4263-9c1c-2e6413804681" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
|
192 |
+
|
193 |
+
|
194 |
+
Evaluation Results
|
195 |
+
|
196 |
+
You can find the details about evaluation process and the evaluation results.
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
| Metric | Value |
|
201 |
+
|----------|---------|
|
202 |
+
| accuracy | 0.7888 |
|
203 |
+
| f1 score | 0.7888 |
|
204 |
+
|
205 |
+
# How to Get Started with the Model
|
206 |
+
|
207 |
+
Use the code below to get started with the model.
|
208 |
+
|
209 |
+
<details>
|
210 |
+
<summary> Click to expand </summary>
|
211 |
+
|
212 |
+
```python
|
213 |
+
import pickle
|
214 |
+
with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file:
|
215 |
+
clf = pickle.load(file)
|
216 |
+
```
|
217 |
+
|
218 |
+
</details>
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
# Model Card Authors
|
224 |
+
|
225 |
+
This model card is written by following authors:
|
226 |
+
|
227 |
+
huggingface
|
228 |
+
|
229 |
+
# Model Card Contact
|
230 |
+
|
231 |
+
You can contact the model card authors through following channels:
|
232 |
+
[More Information Needed]
|
233 |
+
|
234 |
+
# Citation
|
235 |
+
|
236 |
+
Below you can find information related to citation.
|
237 |
+
|
238 |
+
**BibTeX:**
|
239 |
+
```
|
240 |
+
[More Information Needed]
|
241 |
+
```
|
242 |
+
|
243 |
+
|
244 |
+
Tree Plot
|
245 |
+
![Tree Plot](tree.png)
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
Confusion Matrix
|
250 |
+
![Confusion Matrix](confusion_matrix.png)
|