huseinzol05
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -3,199 +3,116 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
[
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# Malaysian Qwen1.5-0.5B + siglip-base-patch16-384
|
7 |
+
|
8 |
+
WanDB https://wandb.ai/huseinzol05/vision-qwen0.5?workspace=user-huseinzol05
|
9 |
+
|
10 |
+
## how-to
|
11 |
+
|
12 |
+
```python
|
13 |
+
from modeling_vision import MM_LLMs, MM_LLMs_Config
|
14 |
+
from transformers import AutoTokenizer, AutoProcessor
|
15 |
+
from PIL import Image
|
16 |
+
import requests
|
17 |
+
|
18 |
+
def prepare_dataset(messages, images: List[str] = None):
|
19 |
+
if images is not None:
|
20 |
+
images = [Image.open(f).convert('RGB') for f in images]
|
21 |
+
image_output = image_processor(images=images, return_tensors='pt')['pixel_values']
|
22 |
+
else:
|
23 |
+
image_output = None
|
24 |
+
|
25 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize = False)
|
26 |
+
outputs = tokenizer(
|
27 |
+
prompt,
|
28 |
+
return_tensors='pt',
|
29 |
+
return_overflowing_tokens=False,
|
30 |
+
return_length=False)
|
31 |
+
|
32 |
+
outputs['images'] = image_output
|
33 |
+
outputs['image_index'] = torch.tensor([0] * len(outputs['images']))
|
34 |
+
outputs['image_starts'] = torch.tensor([tokenizer.convert_tokens_to_ids('<image>')] * len(outputs['images']))
|
35 |
+
return outputs
|
36 |
+
|
37 |
+
model = MM_LLMs.from_pretrained(
|
38 |
+
'mesolitica/malaysian-Qwen1.5-0.5B-siglip-base-384-vision',
|
39 |
+
flash_attention = True,
|
40 |
+
dtype = torch.bfloat16,
|
41 |
+
torch_dtype = torch.bfloat16
|
42 |
+
)
|
43 |
+
_ = model.cuda()
|
44 |
+
|
45 |
+
image_processor = AutoProcessor.from_pretrained('google/siglip-base-patch16-384')
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-Qwen1.5-0.5B-siglip-base-384-vision')
|
47 |
+
model.llm.generation_config.eos_token_id = tokenizer.eos_token_id
|
48 |
+
|
49 |
+
with open('Persian-cat-breed.jpg', 'wb') as fopen:
|
50 |
+
fopen.write(requests.get('https://cdn.beautifulnara.net/wp-content/uploads/2017/12/10201620/Persian-cat-breed.jpg').content)
|
51 |
+
|
52 |
+
with open('nasi-goreng-1-23.jpg', 'wb') as fopen:
|
53 |
+
fopen.write(requests.get('https://www.jocooks.com/wp-content/uploads/2023/09/nasi-goreng-1-23.jpg').content)
|
54 |
+
|
55 |
+
messages = [
|
56 |
+
{'role': 'user', 'content': '<image> </image> ini gambar apa'},
|
57 |
+
]
|
58 |
+
outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg'])
|
59 |
+
outputs['images'] = outputs['images'].type(model.dtype)
|
60 |
+
for k in outputs.keys():
|
61 |
+
if outputs[k] is not None:
|
62 |
+
outputs[k] = outputs[k].cuda()
|
63 |
+
|
64 |
+
with torch.no_grad():
|
65 |
+
model_inputs = model.prepare_inputs_for_generation(**outputs)
|
66 |
+
r = model_inputs.pop('input_ids', None)
|
67 |
+
|
68 |
+
generate_kwargs = dict(
|
69 |
+
model_inputs,
|
70 |
+
max_new_tokens=300,
|
71 |
+
top_p=0.95,
|
72 |
+
top_k=50,
|
73 |
+
temperature=0.1,
|
74 |
+
do_sample=True,
|
75 |
+
num_beams=1,
|
76 |
+
)
|
77 |
+
|
78 |
+
r = model.llm.generate(**generate_kwargs)
|
79 |
+
print(tokenizer.decode(r[0]))
|
80 |
+
```
|
81 |
+
|
82 |
+
```
|
83 |
+
<|endoftext|><|im_start|>assistant
|
84 |
+
Ini adalah gambar kucing putih yang duduk di atas sofa hitam.<|im_end|>
|
85 |
+
```
|
86 |
+
|
87 |
+
```python
|
88 |
+
messages = [
|
89 |
+
{'role': 'user', 'content': '<image> </image> <image> </image> apa kaitan 2 gambar ni'},
|
90 |
+
]
|
91 |
+
outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg', 'nasi-goreng-1-23.jpg'])
|
92 |
+
outputs['images'] = outputs['images'].type(model.dtype)
|
93 |
+
for k in outputs.keys():
|
94 |
+
if outputs[k] is not None:
|
95 |
+
outputs[k] = outputs[k].cuda()
|
96 |
+
|
97 |
+
with torch.no_grad():
|
98 |
+
model_inputs = model.prepare_inputs_for_generation(**outputs)
|
99 |
+
r = model_inputs.pop('input_ids', None)
|
100 |
+
|
101 |
+
generate_kwargs = dict(
|
102 |
+
model_inputs,
|
103 |
+
max_new_tokens=300,
|
104 |
+
top_p=0.95,
|
105 |
+
top_k=50,
|
106 |
+
temperature=0.1,
|
107 |
+
do_sample=True,
|
108 |
+
num_beams=1,
|
109 |
+
)
|
110 |
+
|
111 |
+
r = model.llm.generate(**generate_kwargs)
|
112 |
+
print(tokenizer.decode(r[0]))
|
113 |
+
```
|
114 |
+
|
115 |
+
```
|
116 |
+
<|endoftext|><|im_start|>assistant
|
117 |
+
Tiada hubungan langsung antara gambar 1 dan gambar 2. Gambar 1 ialah imej kucing putih dengan bulu putih, manakala gambar 2 ialah gambar mangkuk makan tengah hari kacang hitam dan lobak merah yang dicincang, dengan garpu diletakkan di sebelahnya. Kedua-duanya tidak berkaitan dari segi kandungan.<|im_end|>
|
118 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|