File size: 5,802 Bytes
19e387b
 
 
 
 
 
 
 
 
7483544
 
19e387b
 
 
 
 
 
 
9f8e909
19e387b
9f8e909
19e387b
 
 
 
 
 
 
 
 
 
 
9f8e909
 
 
 
 
 
 
 
 
19e387b
9f8e909
19e387b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8e909
 
 
e9e2fb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8e909
e9e2fb7
9f8e909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e2fb7
 
9f8e909
 
 
e9e2fb7
 
 
 
 
9f8e909
e9e2fb7
9f8e909
e9e2fb7
9f8e909
e9e2fb7
9f8e909
 
 
e9e2fb7
 
 
9f8e909
 
 
e9e2fb7
 
 
 
 
19e387b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
language:
- ms
---

# Full Parameter Finetuning 7B 32768 context length Mistral on Malaysian instructions dataset

README at https://github.com/mesolitica/malaya/tree/5.1/session/mistral#instructions-7b-16384-context-length

We use exact Mistral Instruct chat template.

WandB, https://wandb.ai/mesolitica/fpf-mistral-7b-hf-instructions-16k?workspace=user-husein-mesolitica

## how-to

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
import json

def parse_mistral_chat(messages, function_call = None):

    user_query = messages[-1]['content']

    users, assistants = [], []
    for q in messages[:-1]:
        if q['role'] == 'user':
            users.append(q['content'])
        elif q['role'] == 'assistant':
            assistants.append(q['content'])

    texts = ['<s>']
    
    if function_call:
        fs = []
        for f in function_call:
            f = json.dumps(f, indent=4)
            fs.append(f)
        fs = '\n\n'.join(fs)
        texts.append(f'\n[FUNCTIONCALL]\n{fs}\n')
        
    for u, a in zip(users, assistants):
        texts.append(f'[INST] {u.strip()} [/INST] {a.strip()}</s>')

    texts.append(f'[INST] {user_query.strip()} [/INST]')
    prompt = ''.join(texts).strip()
    return prompt

TORCH_DTYPE = 'bfloat16'
nf4_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type='nf4',
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=getattr(torch, TORCH_DTYPE)
)

tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-mistral-7b-32k-instructions')
model = AutoModelForCausalLM.from_pretrained(
    'mesolitica/malaysian-mistral-7b-32k-instructions',
    use_flash_attention_2 = True,
    quantization_config = nf4_config
)

messages = [
    {'role': 'user', 'content': 'kwsp tu apa'}
]
prompt = parse_mistral_chat(messages)
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
generate_kwargs = dict(
    inputs,
    max_new_tokens=1024,
    top_p=0.95,
    top_k=50,
    temperature=0.9,
    do_sample=True,
    num_beams=1,
)
r = model.generate(**generate_kwargs)
tokenizer.decode(r[0])
```

```text
<s> [INST] kwsp tu apa [/INST]KWSP bermaksud Kumpulan Wang Simpanan Pekerja. Ia adalah sebuah institusi simpanan persaraan yang ditubuhkan oleh Kementerian Kewangan Malaysia untuk tujuan mengumpul simpanan ahli untuk dibayar pada umur persaraan, penuh atau penuh persaraan penuh. KWSP ditubuhkan pada tahun 1951 dan mula beroperasi pada tahun 1952. KWSP adalah salah satu institusi simpanan persaraan terbesar di dunia, dengan pangkalan ahli sekitar 14 juta ahli.</s>
```

```python
messages = [
    {'role': 'user', 'content': 'camne nak kill pid dalam linux'}
]
prompt = parse_mistral_chat(messages)
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
generate_kwargs = dict(
    inputs,
    max_new_tokens=1024,
    top_p=0.95,
    top_k=50,
    temperature=0.9,
    do_sample=True,
    num_beams=1,
)
r = model.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
```

```text
<s> [INST] camne nak kill pid dalam linux [/INST]Untuk membunuh pid dalam Linux, ikuti langkah-langkah berikut:

1. Cari pid menggunakan perintah `ps aux | grep 'pid'`. Pilih pid yang anda ingin bunuh.

2. Gunakan perintah `kill` diikuti dengan nombor pid. Sebagai contoh, jika anda ingin membunuh pid dengan nombor 1234, gunakan perintah `kill -1234`.

3. Sahkan pembunuhan dengan menjalankan perintah `kill -id`. Jika perintah tidak mengembalikan sebarang ralat, maka pid telah dibunuh dengan berjaya.

4. Anda juga boleh menggunakan perintah `kill -s` untuk membunuh semua pid dengan nama atau atribut tertentu.</s>
```

```python
f = {
    'name': 'parse_entities',
    'description': 'extract entities from the text',
    'parameters': {
        'type': 'object',
        'properties': {
            'drink': {
                'type': 'string',
                'description': 'drink name',
            },
            'event': {
                'type': 'string',
                'description': 'event name',
            },
            'person_name': {
                'type': 'string',
                'description': 'person name',
            }
        },
        'required': [
            'drink',
            'event',
            'person_name'
        ]
    }
}
messages = [
    {'role': 'user', 'content': 'nama saya husein bin zolkepli, saya sekarang berada di jomheboh 2023 sambil minum starbucks'}
]
prompt = parse_mistral_chat(messages, function_call = [f])
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
generate_kwargs = dict(
    inputs,
    max_new_tokens=128,
    top_p=0.95,
    top_k=50,
    temperature=0.9,
    do_sample=True,
    num_beams=1,
)
r = model.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
```

```text
<s> 
[FUNCTIONCALL]
{
    "name": "parse_entities",
    "description": "extract entities from the text",
    "parameters": {
        "type": "object",
        "properties": {
            "drink": {
                "type": "string",
                "description": "drink name"
            },
            "event": {
                "type": "string",
                "description": "event name"
            },
            "person_name": {
                "type": "string",
                "description": "person name"
            }
        },
        "required": [
            "drink",
            "event",
            "person_name"
        ]
    }
}
[INST] nama saya husein bin zolkepli, saya sekarang berada di jomheboh 2023 sambil minum starbucks [/INST] <functioncall> {"name": "parse_entities", "arguments": '{
  "drink": "Starbucks",
  "event": "Jom Heboh 2023",
  "person_name": "Husein Bin Zolkepli"
}'}</s>
```