File size: 4,960 Bytes
fbf9d10 ad98494 fbf9d10 ad98494 fbf9d10 87b3312 fbf9d10 39ad8ea 1ba6a2e 39ad8ea e781e71 060eabb e781e71 060eabb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
language:
- ms
- en
- zh
- ta
---
# Malaysian Finetune Whisper Small V2
Finetune Whisper Small on [Malaysian STT Whisper](https://huggingface.co/datasets/mesolitica/malaysian-stt-whisper)
WanDB at https://wandb.ai/huseinzol05/malaysian-whisper-small-v2, **still on training**
## Improvement
1. Distilled from Whisper Large V3 on Malaysian and Science context.
2. Better translation for Malay, Manglish, Mandarin, Tamil and Science context.
3. Word level timestamp, introduced `<|transcribeprecise|>` token, **a new task!**
## how to
Load the model,
```python
import torch
from transformers.models.whisper import tokenization_whisper
tokenization_whisper.TASK_IDS = ["translate", "transcribe", "transcribeprecise"]
from transformers import WhisperForConditionalGeneration, WhisperProcessor
processor = WhisperProcessor.from_pretrained(
'mesolitica/malaysian-whisper-small-v2'
)
tokenizer = processor.tokenizer
model = WhisperForConditionalGeneration.from_pretrained(
'mesolitica/malaysian-whisper-small-v2', torch_dtype = torch.bfloat16
).cuda().eval()
```
### Transcribe
```python
from datasets import Audio
import requests
sr = 16000
audio = Audio(sampling_rate=sr)
r = requests.get('https://github.com/mesolitica/malaya-speech/raw/master/speech/assembly.mp3')
y = audio.decode_example(audio.encode_example(r.content))['array']
with torch.no_grad():
p = processor([y], return_tensors='pt')
p['input_features'] = p['input_features'].to(torch.bfloat16)
r = model.generate(
p['input_features'].cuda(),
output_scores=True,
return_dict_in_generate=True,
language='ms',
return_timestamps=True, task = 'transcribe')
tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(r.sequences[0]))
```
```
<|startoftranscript|><|ms|><|transcribe|><|0.02|> Assembly on Aging di Vienna, Australia<|3.78|><|3.78|> yang telah diadakan pada tahun 1982<|6.50|><|6.50|> dan berasaskan unjuran tersebut<|8.82|><|8.82|> maka Jabatan Perangkaan Malaysia<|10.40|><|10.40|> menganggarkan menjelang tahun 2035<|13.72|><|13.72|> sejumlah 15% penduduk kita adalah daripada kalangan warga emas.<|18.72|><|19.28|> Untuk makluman Tuan Yang Pertua dan juga Alia Mbahumat,<|22.12|><|22.26|> pembangunan sistem pendaftaran warga emas<|24.02|><|24.02|> ataupun kita sebutkan event<|25.38|><|25.38|> adalah usaha kerajaan ke arah merealisasikan<|28.40|><|endoftext|>
```
### Transcribe word level timestamp
You must use `transcribeprecise` for the task, or `<|transcribeprecise|>` token,
```python
from datasets import Audio
import requests
sr = 16000
audio = Audio(sampling_rate=sr)
r = requests.get('https://github.com/mesolitica/malaya-speech/raw/master/speech/assembly.mp3')
y = audio.decode_example(audio.encode_example(r.content))['array']
with torch.no_grad():
p = processor([y], return_tensors='pt')
p['input_features'] = p['input_features'].to(torch.bfloat16)
r = model.generate(
p['input_features'].cuda(),
output_scores=True,
return_dict_in_generate=True,
language='ms',
return_timestamps=True, task = 'transcribeprecise')
tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(r.sequences[0]))
```
```
<|startoftranscript|><|ms|><|transcribeprecise|><|0.02|> Assembly<|1.20|><|1.56|> on<|1.64|><|1.74|> Aging<|2.04|><|2.14|> di<|2.22|><|2.26|> Vienna<|2.50|><|2.72|> Australia<|3.12|><|4.26|> yang<|4.38|><|4.42|> telah<|4.58|><|4.62|> diadakan<|5.08|><|5.16|> pada<|5.30|><|5.36|> tahun<|5.60|><|5.62|> 1982<|6.92|><|7.12|> dan<|7.24|><|7.32|> berasaskan<|7.88|><|7.98|> unjuran<|8.36|><|8.42|> tersebut<|8.80|><|8.88|> maka<|9.06|><|9.12|> Jabatan<|9.48|><|9.56|> Perangkaan<|9.98|><|10.04|> Malaysia<|10.36|><|10.84|> menganggarkan<|11.56|><|11.98|> menjelang<|12.34|><|12.40|> tahun<|12.64|><|12.66|> 2035<|14.08|><|14.50|> sejumlah<|14.96|><|14.98|> 15%<|16.14|><|16.26|> penduduk<|16.62|><|16.68|> kita<|16.90|><|17.02|> adalah<|17.30|><|17.40|> daripada<|17.80|><|17.86|> kalangan<|18.16|><|18.22|> warga<|18.40|><|18.46|> emas.<|18.68|><|19.24|> Untuk<|19.40|><|19.46|> makluman<|19.86|><|20.64|> Tuan<|20.76|><|20.82|> Yang<|20.90|><|20.94|> Pertua<|21.14|><|21.20|> dan<|21.28|><|21.34|> juga<|21.50|><|21.58|> Alia<|21.70|><|21.76|> Mbah<|21.88|><|21.92|> Ahmad,<|22.08|><|22.22|> pembangunan<|22.66|><|22.72|> sistem<|23.00|><|23.06|> pendaftaran<|23.48|><|23.54|> warga<|23.72|><|23.78|> emas<|23.98|><|24.06|> ataupun<|24.36|><|24.42|> kita<|24.56|><|24.62|> sebutkan<|24.94|><|25.08|> event<|25.38|><|25.86|> adalah<|26.10|><|26.18|> usaha<|26.46|><|26.60|> kerajaan<|27.06|><|27.16|> kearah<|27.44|><|27.50|> merealisasikan<|28.36|><|28.86|> objektif<|29.36|><|29.42|> yang<|29.52|><|29.56|> telah<|29.72|><|29.76|> digarakan<|30.00|><|endoftext|>
```
**Make sure you already monkey patched `tokenization_whisper.TASK_IDS = ["translate", "transcribe", "transcribeprecise"]` at starting of your script**.
|