huseinzol05 commited on
Commit
590edd7
·
1 Parent(s): dbfb01f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -1
README.md CHANGED
@@ -15,4 +15,46 @@ Finetune Whisper Small on Malaysian dataset,
15
 
16
  Script at https://github.com/mesolitica/malaya-speech/tree/malaysian-speech/session/whisper
17
 
18
- Wandb at https://wandb.ai/huseinzol05/malaysian-whisper-small?workspace=user-huseinzol05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  Script at https://github.com/mesolitica/malaya-speech/tree/malaysian-speech/session/whisper
17
 
18
+ Wandb at https://wandb.ai/huseinzol05/malaysian-whisper-small?workspace=user-huseinzol05
19
+
20
+ ## What languages we finetuned?
21
+
22
+ 1. `ms`, Malay, can be standard malay and local malay.
23
+ 2. `en`, English, can be standard english and manglish.
24
+
25
+ ## how-to
26
+
27
+ ```python
28
+ from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, pipeline
29
+ from datasets import Audio
30
+ import requests
31
+
32
+ sr = 16000
33
+ audio = Audio(sampling_rate=sr)
34
+
35
+ processor = AutoProcessor.from_pretrained("mesolitica/malaysian-whisper-small")
36
+ model = AutoModelForSpeechSeq2Seq.from_pretrained("mesolitica/malaysian-whisper-small")
37
+
38
+ r = requests.get('https://huggingface.co/datasets/huseinzol05/malaya-speech-stt-test-set/resolve/main/test.mp3')
39
+ y = audio.decode_example(audio.encode_example(r.content))['array']
40
+ inputs = processor([y], return_tensors = 'pt')
41
+ r = model.generate(inputs['input_features'], language='ms', return_timestamps=True)
42
+ processor.tokenizer.decode(r[0])
43
+ ```
44
+
45
+ ```text
46
+ '<|startoftranscript|><|ms|><|transcribe|> Zamily On Aging di Vener Australia, Australia yang telah diadakan pada tahun 1982 dan berasaskan unjuran tersebut maka jabatan perangkaan Malaysia menganggarkan menjelang tahun 2005 sejumlah 15% penduduk kita adalah daripada kalangan warga emas. Untuk makluman Tuan Yang Pertua dan juga Alian Bohon, pembangunan sistem pendafiran warga emas ataupun kita sebutkan event adalah usaha kerajaan ke arah merealisasikan objektif yang telah digangkatkan<|endoftext|>'
47
+ ```
48
+
49
+ ```python
50
+ r = model.generate(inputs['input_features'], language='en', return_timestamps=True)
51
+ processor.tokenizer.decode(r[0])
52
+ ```
53
+
54
+ ```text
55
+ <|startoftranscript|><|en|><|transcribe|> Assembly on Aging, Divina Australia, Australia, which has been provided in 1982 and the operation of the transportation of Malaysia's implementation to prevent the tourism of the 25th, 15% of our population is from the market. For the information of the President and also the respected, the development of the market system or we have made an event.<|endoftext|>
56
+ ```
57
+
58
+ ## how to predict longer audio?
59
+
60
+ You need to chunk the audio by 30 seconds, and predict each samples.