huseinzol05
commited on
Commit
•
6e72ee3
1
Parent(s):
f5abacf
add model
Browse files- .gitignore +1 -0
- README.md +69 -0
- config.json +29 -0
- convert-from-malaya.ipynb +629 -0
- pytorch_model.bin +3 -0
- sp10m.cased.ms-en.model +3 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer_config.json +1 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.ipynb_checkpoints
|
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ms
|
3 |
+
---
|
4 |
+
|
5 |
+
# t5-small-bahasa-cased
|
6 |
+
|
7 |
+
Pretrained T5 small language model for Malay.
|
8 |
+
|
9 |
+
## Pretraining Corpus
|
10 |
+
|
11 |
+
`t5-small-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on,
|
12 |
+
|
13 |
+
1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
|
14 |
+
2. News title prediction on bahasa news.
|
15 |
+
3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
|
16 |
+
4. Translated QA Natural.
|
17 |
+
5. Text Similarity task on translated SNLI and translated MNLI.
|
18 |
+
6. EN-MS translation.
|
19 |
+
7. MS-EN translation.
|
20 |
+
8. Abstractive Summarization.
|
21 |
+
9. Knowledge Graph triples generation.
|
22 |
+
10. Paraphrase.
|
23 |
+
|
24 |
+
Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare
|
25 |
+
|
26 |
+
## Pretraining details
|
27 |
+
|
28 |
+
- This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU.
|
29 |
+
- All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5
|
30 |
+
|
31 |
+
## Load Pretrained Model
|
32 |
+
|
33 |
+
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
|
34 |
+
|
35 |
+
```python
|
36 |
+
from transformers import T5Tokenizer, T5Model
|
37 |
+
|
38 |
+
model = T5Model.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
|
39 |
+
tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
|
40 |
+
```
|
41 |
+
|
42 |
+
## Example using T5ForConditionalGeneration
|
43 |
+
|
44 |
+
```python
|
45 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
46 |
+
|
47 |
+
tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
|
48 |
+
model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
|
49 |
+
input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt')
|
50 |
+
outputs = model.generate(input_ids)
|
51 |
+
print(tokenizer.decode(outputs[0]))
|
52 |
+
```
|
53 |
+
|
54 |
+
Output is,
|
55 |
+
|
56 |
+
```
|
57 |
+
'Mahathir Mohamad'
|
58 |
+
```
|
59 |
+
|
60 |
+
## Supported prefix
|
61 |
+
|
62 |
+
1. `soalan: {string}`, trained using Natural QA.
|
63 |
+
2. `ringkasan: {string}`, for abstractive summarization.
|
64 |
+
3. `tajuk: {string}`, for abstractive title.
|
65 |
+
4. `parafrasa: {string}`, for abstractive paraphrase.
|
66 |
+
5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation.
|
67 |
+
6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation.
|
68 |
+
7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format.
|
69 |
+
8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./pytorch_model.bin",
|
3 |
+
"architectures": [
|
4 |
+
"T5Model"
|
5 |
+
],
|
6 |
+
"d_ff": 1344,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 384,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "relu",
|
13 |
+
"gradient_checkpointing": false,
|
14 |
+
"initializer_factor": 1.0,
|
15 |
+
"inputs_length": 512,
|
16 |
+
"is_encoder_decoder": true,
|
17 |
+
"layer_norm_epsilon": 1e-06,
|
18 |
+
"model_type": "t5",
|
19 |
+
"n_positions": 512,
|
20 |
+
"num_decoder_layers": 4,
|
21 |
+
"num_heads": 12,
|
22 |
+
"num_layers": 4,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"relative_attention_num_buckets": 32,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.10.0",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32128
|
29 |
+
}
|
convert-from-malaya.ipynb
ADDED
@@ -0,0 +1,629 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"scrolled": true
|
8 |
+
},
|
9 |
+
"outputs": [
|
10 |
+
{
|
11 |
+
"data": {
|
12 |
+
"text/plain": [
|
13 |
+
"'4.10.0'"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
"execution_count": 1,
|
17 |
+
"metadata": {},
|
18 |
+
"output_type": "execute_result"
|
19 |
+
}
|
20 |
+
],
|
21 |
+
"source": [
|
22 |
+
"import transformers\n",
|
23 |
+
"transformers.__version__"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"from transformers import T5Config, T5Model, load_tf_weights_in_t5"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 4,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"name": "stdout",
|
42 |
+
"output_type": "stream",
|
43 |
+
"text": [
|
44 |
+
"checkpoint model.ckpt-1000000.index\r\n",
|
45 |
+
"model.ckpt-1000000.data-00000-of-00002 model.ckpt-1000000.meta\r\n",
|
46 |
+
"model.ckpt-1000000.data-00001-of-00002 operative_config.gin\r\n"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"source": [
|
51 |
+
"# !wget https://f000.backblazeb2.com/file/malaya-model/pretrained/t5-tiny-2021-07-28.tar.gz\n",
|
52 |
+
"# !tar -zxf t5-tiny-2021-07-28.tar.gz\n",
|
53 |
+
"# !rm t5-tiny-2021-07-28.tar.gz\n",
|
54 |
+
"!ls t5-tiny-v2"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": 5,
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [
|
62 |
+
{
|
63 |
+
"name": "stdout",
|
64 |
+
"output_type": "stream",
|
65 |
+
"text": [
|
66 |
+
"T5Config {\n",
|
67 |
+
" \"d_ff\": 1344,\n",
|
68 |
+
" \"d_kv\": 64,\n",
|
69 |
+
" \"d_model\": 384,\n",
|
70 |
+
" \"decoder_start_token_id\": 0,\n",
|
71 |
+
" \"dropout_rate\": 0.1,\n",
|
72 |
+
" \"eos_token_id\": 1,\n",
|
73 |
+
" \"feed_forward_proj\": \"relu\",\n",
|
74 |
+
" \"gradient_checkpointing\": false,\n",
|
75 |
+
" \"initializer_factor\": 1.0,\n",
|
76 |
+
" \"inputs_length\": 512,\n",
|
77 |
+
" \"is_encoder_decoder\": true,\n",
|
78 |
+
" \"layer_norm_epsilon\": 1e-06,\n",
|
79 |
+
" \"model_type\": \"t5\",\n",
|
80 |
+
" \"n_positions\": 512,\n",
|
81 |
+
" \"num_decoder_layers\": 4,\n",
|
82 |
+
" \"num_heads\": 12,\n",
|
83 |
+
" \"num_layers\": 4,\n",
|
84 |
+
" \"pad_token_id\": 0,\n",
|
85 |
+
" \"relative_attention_num_buckets\": 32,\n",
|
86 |
+
" \"transformers_version\": \"4.10.0\",\n",
|
87 |
+
" \"use_cache\": true,\n",
|
88 |
+
" \"vocab_size\": 32128\n",
|
89 |
+
"}\n",
|
90 |
+
"\n"
|
91 |
+
]
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"source": [
|
95 |
+
"config = T5Config(\n",
|
96 |
+
" vocab_size = 32128,\n",
|
97 |
+
" n_positions=512,\n",
|
98 |
+
" d_ff = 1344,\n",
|
99 |
+
" d_kv = 64,\n",
|
100 |
+
" d_model = 384,\n",
|
101 |
+
" dropout_rate = 0.1,\n",
|
102 |
+
" inputs_length = 512,\n",
|
103 |
+
" num_heads = 12,\n",
|
104 |
+
" num_layers = 4,\n",
|
105 |
+
" decoder_start_token_id = 0,\n",
|
106 |
+
" eos_token_id = 1,\n",
|
107 |
+
" pad_token_id = 0)\n",
|
108 |
+
"print(config)\n",
|
109 |
+
"config.save_pretrained('./')"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": 6,
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [
|
117 |
+
{
|
118 |
+
"data": {
|
119 |
+
"text/plain": [
|
120 |
+
"T5Model(\n",
|
121 |
+
" (shared): Embedding(32128, 384)\n",
|
122 |
+
" (encoder): T5Stack(\n",
|
123 |
+
" (embed_tokens): Embedding(32128, 384)\n",
|
124 |
+
" (block): ModuleList(\n",
|
125 |
+
" (0): T5Block(\n",
|
126 |
+
" (layer): ModuleList(\n",
|
127 |
+
" (0): T5LayerSelfAttention(\n",
|
128 |
+
" (SelfAttention): T5Attention(\n",
|
129 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
130 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
131 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
132 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
133 |
+
" (relative_attention_bias): Embedding(32, 12)\n",
|
134 |
+
" )\n",
|
135 |
+
" (layer_norm): T5LayerNorm()\n",
|
136 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
137 |
+
" )\n",
|
138 |
+
" (1): T5LayerFF(\n",
|
139 |
+
" (DenseReluDense): T5DenseReluDense(\n",
|
140 |
+
" (wi): Linear(in_features=384, out_features=1344, bias=False)\n",
|
141 |
+
" (wo): Linear(in_features=1344, out_features=384, bias=False)\n",
|
142 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
143 |
+
" )\n",
|
144 |
+
" (layer_norm): T5LayerNorm()\n",
|
145 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
146 |
+
" )\n",
|
147 |
+
" )\n",
|
148 |
+
" )\n",
|
149 |
+
" (1): T5Block(\n",
|
150 |
+
" (layer): ModuleList(\n",
|
151 |
+
" (0): T5LayerSelfAttention(\n",
|
152 |
+
" (SelfAttention): T5Attention(\n",
|
153 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
154 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
155 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
156 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
157 |
+
" )\n",
|
158 |
+
" (layer_norm): T5LayerNorm()\n",
|
159 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
160 |
+
" )\n",
|
161 |
+
" (1): T5LayerFF(\n",
|
162 |
+
" (DenseReluDense): T5DenseReluDense(\n",
|
163 |
+
" (wi): Linear(in_features=384, out_features=1344, bias=False)\n",
|
164 |
+
" (wo): Linear(in_features=1344, out_features=384, bias=False)\n",
|
165 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
166 |
+
" )\n",
|
167 |
+
" (layer_norm): T5LayerNorm()\n",
|
168 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
169 |
+
" )\n",
|
170 |
+
" )\n",
|
171 |
+
" )\n",
|
172 |
+
" (2): T5Block(\n",
|
173 |
+
" (layer): ModuleList(\n",
|
174 |
+
" (0): T5LayerSelfAttention(\n",
|
175 |
+
" (SelfAttention): T5Attention(\n",
|
176 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
177 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
178 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
179 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
180 |
+
" )\n",
|
181 |
+
" (layer_norm): T5LayerNorm()\n",
|
182 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
183 |
+
" )\n",
|
184 |
+
" (1): T5LayerFF(\n",
|
185 |
+
" (DenseReluDense): T5DenseReluDense(\n",
|
186 |
+
" (wi): Linear(in_features=384, out_features=1344, bias=False)\n",
|
187 |
+
" (wo): Linear(in_features=1344, out_features=384, bias=False)\n",
|
188 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
189 |
+
" )\n",
|
190 |
+
" (layer_norm): T5LayerNorm()\n",
|
191 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
192 |
+
" )\n",
|
193 |
+
" )\n",
|
194 |
+
" )\n",
|
195 |
+
" (3): T5Block(\n",
|
196 |
+
" (layer): ModuleList(\n",
|
197 |
+
" (0): T5LayerSelfAttention(\n",
|
198 |
+
" (SelfAttention): T5Attention(\n",
|
199 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
200 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
201 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
202 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
203 |
+
" )\n",
|
204 |
+
" (layer_norm): T5LayerNorm()\n",
|
205 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
206 |
+
" )\n",
|
207 |
+
" (1): T5LayerFF(\n",
|
208 |
+
" (DenseReluDense): T5DenseReluDense(\n",
|
209 |
+
" (wi): Linear(in_features=384, out_features=1344, bias=False)\n",
|
210 |
+
" (wo): Linear(in_features=1344, out_features=384, bias=False)\n",
|
211 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
212 |
+
" )\n",
|
213 |
+
" (layer_norm): T5LayerNorm()\n",
|
214 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
215 |
+
" )\n",
|
216 |
+
" )\n",
|
217 |
+
" )\n",
|
218 |
+
" )\n",
|
219 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
220 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
221 |
+
" )\n",
|
222 |
+
" (decoder): T5Stack(\n",
|
223 |
+
" (embed_tokens): Embedding(32128, 384)\n",
|
224 |
+
" (block): ModuleList(\n",
|
225 |
+
" (0): T5Block(\n",
|
226 |
+
" (layer): ModuleList(\n",
|
227 |
+
" (0): T5LayerSelfAttention(\n",
|
228 |
+
" (SelfAttention): T5Attention(\n",
|
229 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
230 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
231 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
232 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
233 |
+
" (relative_attention_bias): Embedding(32, 12)\n",
|
234 |
+
" )\n",
|
235 |
+
" (layer_norm): T5LayerNorm()\n",
|
236 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
237 |
+
" )\n",
|
238 |
+
" (1): T5LayerCrossAttention(\n",
|
239 |
+
" (EncDecAttention): T5Attention(\n",
|
240 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
241 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
242 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
243 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
244 |
+
" )\n",
|
245 |
+
" (layer_norm): T5LayerNorm()\n",
|
246 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
247 |
+
" )\n",
|
248 |
+
" (2): T5LayerFF(\n",
|
249 |
+
" (DenseReluDense): T5DenseReluDense(\n",
|
250 |
+
" (wi): Linear(in_features=384, out_features=1344, bias=False)\n",
|
251 |
+
" (wo): Linear(in_features=1344, out_features=384, bias=False)\n",
|
252 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
253 |
+
" )\n",
|
254 |
+
" (layer_norm): T5LayerNorm()\n",
|
255 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
256 |
+
" )\n",
|
257 |
+
" )\n",
|
258 |
+
" )\n",
|
259 |
+
" (1): T5Block(\n",
|
260 |
+
" (layer): ModuleList(\n",
|
261 |
+
" (0): T5LayerSelfAttention(\n",
|
262 |
+
" (SelfAttention): T5Attention(\n",
|
263 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
264 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
265 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
266 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
267 |
+
" )\n",
|
268 |
+
" (layer_norm): T5LayerNorm()\n",
|
269 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
270 |
+
" )\n",
|
271 |
+
" (1): T5LayerCrossAttention(\n",
|
272 |
+
" (EncDecAttention): T5Attention(\n",
|
273 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
274 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
275 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
276 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
277 |
+
" )\n",
|
278 |
+
" (layer_norm): T5LayerNorm()\n",
|
279 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
280 |
+
" )\n",
|
281 |
+
" (2): T5LayerFF(\n",
|
282 |
+
" (DenseReluDense): T5DenseReluDense(\n",
|
283 |
+
" (wi): Linear(in_features=384, out_features=1344, bias=False)\n",
|
284 |
+
" (wo): Linear(in_features=1344, out_features=384, bias=False)\n",
|
285 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
286 |
+
" )\n",
|
287 |
+
" (layer_norm): T5LayerNorm()\n",
|
288 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
289 |
+
" )\n",
|
290 |
+
" )\n",
|
291 |
+
" )\n",
|
292 |
+
" (2): T5Block(\n",
|
293 |
+
" (layer): ModuleList(\n",
|
294 |
+
" (0): T5LayerSelfAttention(\n",
|
295 |
+
" (SelfAttention): T5Attention(\n",
|
296 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
297 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
298 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
299 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
300 |
+
" )\n",
|
301 |
+
" (layer_norm): T5LayerNorm()\n",
|
302 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
303 |
+
" )\n",
|
304 |
+
" (1): T5LayerCrossAttention(\n",
|
305 |
+
" (EncDecAttention): T5Attention(\n",
|
306 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
307 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
308 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
309 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
310 |
+
" )\n",
|
311 |
+
" (layer_norm): T5LayerNorm()\n",
|
312 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
313 |
+
" )\n",
|
314 |
+
" (2): T5LayerFF(\n",
|
315 |
+
" (DenseReluDense): T5DenseReluDense(\n",
|
316 |
+
" (wi): Linear(in_features=384, out_features=1344, bias=False)\n",
|
317 |
+
" (wo): Linear(in_features=1344, out_features=384, bias=False)\n",
|
318 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
319 |
+
" )\n",
|
320 |
+
" (layer_norm): T5LayerNorm()\n",
|
321 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
322 |
+
" )\n",
|
323 |
+
" )\n",
|
324 |
+
" )\n",
|
325 |
+
" (3): T5Block(\n",
|
326 |
+
" (layer): ModuleList(\n",
|
327 |
+
" (0): T5LayerSelfAttention(\n",
|
328 |
+
" (SelfAttention): T5Attention(\n",
|
329 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
330 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
331 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
332 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
333 |
+
" )\n",
|
334 |
+
" (layer_norm): T5LayerNorm()\n",
|
335 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
336 |
+
" )\n",
|
337 |
+
" (1): T5LayerCrossAttention(\n",
|
338 |
+
" (EncDecAttention): T5Attention(\n",
|
339 |
+
" (q): Linear(in_features=384, out_features=768, bias=False)\n",
|
340 |
+
" (k): Linear(in_features=384, out_features=768, bias=False)\n",
|
341 |
+
" (v): Linear(in_features=384, out_features=768, bias=False)\n",
|
342 |
+
" (o): Linear(in_features=768, out_features=384, bias=False)\n",
|
343 |
+
" )\n",
|
344 |
+
" (layer_norm): T5LayerNorm()\n",
|
345 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
346 |
+
" )\n",
|
347 |
+
" (2): T5LayerFF(\n",
|
348 |
+
" (DenseReluDense): T5DenseReluDense(\n",
|
349 |
+
" (wi): Linear(in_features=384, out_features=1344, bias=False)\n",
|
350 |
+
" (wo): Linear(in_features=1344, out_features=384, bias=False)\n",
|
351 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
352 |
+
" )\n",
|
353 |
+
" (layer_norm): T5LayerNorm()\n",
|
354 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
355 |
+
" )\n",
|
356 |
+
" )\n",
|
357 |
+
" )\n",
|
358 |
+
" )\n",
|
359 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
360 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
361 |
+
" )\n",
|
362 |
+
")"
|
363 |
+
]
|
364 |
+
},
|
365 |
+
"execution_count": 6,
|
366 |
+
"metadata": {},
|
367 |
+
"output_type": "execute_result"
|
368 |
+
}
|
369 |
+
],
|
370 |
+
"source": [
|
371 |
+
"model = T5Model(config)\n",
|
372 |
+
"load_tf_weights_in_t5(model, config, 't5-tiny-v2/model.ckpt-1000000')"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "code",
|
377 |
+
"execution_count": 7,
|
378 |
+
"metadata": {},
|
379 |
+
"outputs": [
|
380 |
+
{
|
381 |
+
"data": {
|
382 |
+
"text/plain": [
|
383 |
+
"('config.json', 'pytorch_model.bin')"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
"execution_count": 7,
|
387 |
+
"metadata": {},
|
388 |
+
"output_type": "execute_result"
|
389 |
+
}
|
390 |
+
],
|
391 |
+
"source": [
|
392 |
+
"from transformers import CONFIG_NAME, WEIGHTS_NAME\n",
|
393 |
+
"CONFIG_NAME, WEIGHTS_NAME"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": 8,
|
399 |
+
"metadata": {},
|
400 |
+
"outputs": [],
|
401 |
+
"source": [
|
402 |
+
"import torch\n",
|
403 |
+
"\n",
|
404 |
+
"torch.save(model.state_dict(), './' + WEIGHTS_NAME)"
|
405 |
+
]
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"cell_type": "code",
|
409 |
+
"execution_count": 9,
|
410 |
+
"metadata": {},
|
411 |
+
"outputs": [],
|
412 |
+
"source": [
|
413 |
+
"from transformers import T5Config, T5Model, T5Tokenizer"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"execution_count": 10,
|
419 |
+
"metadata": {},
|
420 |
+
"outputs": [],
|
421 |
+
"source": [
|
422 |
+
"# !wget https://f000.backblazeb2.com/file/malaya-model/bpe/sp10m.cased.ms-en.model"
|
423 |
+
]
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"cell_type": "code",
|
427 |
+
"execution_count": 11,
|
428 |
+
"metadata": {},
|
429 |
+
"outputs": [
|
430 |
+
{
|
431 |
+
"data": {
|
432 |
+
"text/plain": [
|
433 |
+
"('./tokenizer_config.json',\n",
|
434 |
+
" './special_tokens_map.json',\n",
|
435 |
+
" './spiece.model',\n",
|
436 |
+
" './added_tokens.json')"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
"execution_count": 11,
|
440 |
+
"metadata": {},
|
441 |
+
"output_type": "execute_result"
|
442 |
+
}
|
443 |
+
],
|
444 |
+
"source": [
|
445 |
+
"tokenizer = T5Tokenizer('sp10m.cased.ms-en.model')\n",
|
446 |
+
"tokenizer.save_pretrained('./')"
|
447 |
+
]
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"cell_type": "code",
|
451 |
+
"execution_count": 12,
|
452 |
+
"metadata": {},
|
453 |
+
"outputs": [],
|
454 |
+
"source": [
|
455 |
+
"tokenizer = T5Tokenizer.from_pretrained('./', lower = False)"
|
456 |
+
]
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"cell_type": "code",
|
460 |
+
"execution_count": 13,
|
461 |
+
"metadata": {},
|
462 |
+
"outputs": [],
|
463 |
+
"source": [
|
464 |
+
"config = T5Config.from_pretrained('./')"
|
465 |
+
]
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"cell_type": "code",
|
469 |
+
"execution_count": 14,
|
470 |
+
"metadata": {},
|
471 |
+
"outputs": [],
|
472 |
+
"source": [
|
473 |
+
"model = T5Model.from_pretrained('./pytorch_model.bin', config = config)"
|
474 |
+
]
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"cell_type": "code",
|
478 |
+
"execution_count": 15,
|
479 |
+
"metadata": {},
|
480 |
+
"outputs": [],
|
481 |
+
"source": [
|
482 |
+
"model.save_pretrained('./')"
|
483 |
+
]
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"cell_type": "code",
|
487 |
+
"execution_count": 16,
|
488 |
+
"metadata": {},
|
489 |
+
"outputs": [],
|
490 |
+
"source": [
|
491 |
+
"from transformers import T5Tokenizer, T5ForConditionalGeneration"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"cell_type": "code",
|
496 |
+
"execution_count": 17,
|
497 |
+
"metadata": {},
|
498 |
+
"outputs": [],
|
499 |
+
"source": [
|
500 |
+
"model = T5ForConditionalGeneration.from_pretrained('./')"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"cell_type": "code",
|
505 |
+
"execution_count": 18,
|
506 |
+
"metadata": {},
|
507 |
+
"outputs": [
|
508 |
+
{
|
509 |
+
"data": {
|
510 |
+
"text/plain": [
|
511 |
+
"'<pad> Mahathir Mohamad</s>'"
|
512 |
+
]
|
513 |
+
},
|
514 |
+
"execution_count": 18,
|
515 |
+
"metadata": {},
|
516 |
+
"output_type": "execute_result"
|
517 |
+
}
|
518 |
+
],
|
519 |
+
"source": [
|
520 |
+
"input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt')\n",
|
521 |
+
"outputs = model.generate(input_ids)\n",
|
522 |
+
"tokenizer.decode(outputs[0])"
|
523 |
+
]
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"cell_type": "code",
|
527 |
+
"execution_count": 19,
|
528 |
+
"metadata": {},
|
529 |
+
"outputs": [
|
530 |
+
{
|
531 |
+
"data": {
|
532 |
+
"text/plain": [
|
533 |
+
"'<pad> PETALING JAYA: Bekas perdana menteri Najib Razak sudah mempersoalkan sama ada kerajaan tahu bagaimana menguruskan wabak wabak'"
|
534 |
+
]
|
535 |
+
},
|
536 |
+
"execution_count": 19,
|
537 |
+
"metadata": {},
|
538 |
+
"output_type": "execute_result"
|
539 |
+
}
|
540 |
+
],
|
541 |
+
"source": [
|
542 |
+
"input_ids = tokenizer.encode('terjemah Inggeris ke Melayu: PETALING JAYA: Former prime minister Najib Razak has questioned whether the government knows how to manage the Covid-19 pandemic, outlining several seemingly contradictory announcements it has made.', return_tensors = 'pt')\n",
|
543 |
+
"outputs = model.generate(input_ids)\n",
|
544 |
+
"tokenizer.decode(outputs[0])"
|
545 |
+
]
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"cell_type": "code",
|
549 |
+
"execution_count": 20,
|
550 |
+
"metadata": {},
|
551 |
+
"outputs": [
|
552 |
+
{
|
553 |
+
"data": {
|
554 |
+
"text/plain": [
|
555 |
+
"'<pad> PETALING JAYA: Former Prime Minister Datuk Seri Najib Tun Razak and Deputy Prime Minister Datuk Seri Ismail'"
|
556 |
+
]
|
557 |
+
},
|
558 |
+
"execution_count": 20,
|
559 |
+
"metadata": {},
|
560 |
+
"output_type": "execute_result"
|
561 |
+
}
|
562 |
+
],
|
563 |
+
"source": [
|
564 |
+
"input_ids = tokenizer.encode('terjemah Melayu ke Inggeris: PETALING JAYA: Pertemuan bekas Perdana Menteri, Datuk Seri Najib Tun Razak dan Timbalan Perdana Menteri, Datuk Seri Ismail Sabri Yaakob hari ini adalah bagi membincangkan isu berkaitan hala tuju dan dasar negara.', return_tensors = 'pt')\n",
|
565 |
+
"outputs = model.generate(input_ids)\n",
|
566 |
+
"tokenizer.decode(outputs[0])"
|
567 |
+
]
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"cell_type": "code",
|
571 |
+
"execution_count": 21,
|
572 |
+
"metadata": {},
|
573 |
+
"outputs": [
|
574 |
+
{
|
575 |
+
"data": {
|
576 |
+
"text/plain": [
|
577 |
+
"'<pad> Roman Catholic Archdiocese of Maracaibo shares border with Roman Catholic Diocese'"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
"execution_count": 21,
|
581 |
+
"metadata": {},
|
582 |
+
"output_type": "execute_result"
|
583 |
+
}
|
584 |
+
],
|
585 |
+
"source": [
|
586 |
+
"input_ids = tokenizer.encode('grafik pengetahuan: Keuskupan Agung Katolik Rom Maracaibo terletak di barat daya Keuskupan Katolik Rom Machiques.', return_tensors = 'pt')\n",
|
587 |
+
"outputs = model.generate(input_ids)\n",
|
588 |
+
"tokenizer.decode(outputs[0])"
|
589 |
+
]
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"cell_type": "code",
|
593 |
+
"execution_count": 22,
|
594 |
+
"metadata": {},
|
595 |
+
"outputs": [],
|
596 |
+
"source": [
|
597 |
+
"!rm -rf t5-tiny-v2"
|
598 |
+
]
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"cell_type": "code",
|
602 |
+
"execution_count": null,
|
603 |
+
"metadata": {},
|
604 |
+
"outputs": [],
|
605 |
+
"source": []
|
606 |
+
}
|
607 |
+
],
|
608 |
+
"metadata": {
|
609 |
+
"kernelspec": {
|
610 |
+
"display_name": "Python 3",
|
611 |
+
"language": "python",
|
612 |
+
"name": "python3"
|
613 |
+
},
|
614 |
+
"language_info": {
|
615 |
+
"codemirror_mode": {
|
616 |
+
"name": "ipython",
|
617 |
+
"version": 3
|
618 |
+
},
|
619 |
+
"file_extension": ".py",
|
620 |
+
"mimetype": "text/x-python",
|
621 |
+
"name": "python",
|
622 |
+
"nbconvert_exporter": "python",
|
623 |
+
"pygments_lexer": "ipython3",
|
624 |
+
"version": "3.7.7"
|
625 |
+
}
|
626 |
+
},
|
627 |
+
"nbformat": 4,
|
628 |
+
"nbformat_minor": 4
|
629 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:096a412a0a55079b223e1d60244d648fa4a04158a331672bb3461dcdd094dca2
|
3 |
+
size 139080297
|
sp10m.cased.ms-en.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26de51154cccc9db6e65e5d466bdb0b1fff9fab1d80f4689711de943448addd6
|
3 |
+
size 803030
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26de51154cccc9db6e65e5d466bdb0b1fff9fab1d80f4689711de943448addd6
|
3 |
+
size 803030
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "sp_model_kwargs": {}, "tokenizer_class": "T5Tokenizer"}
|