huseinzol05
commited on
Commit
·
3f5d181
1
Parent(s):
57efae9
Upload evaluate-gpu.ipynb
Browse files- evaluate-gpu.ipynb +826 -0
evaluate-gpu.ipynb
ADDED
@@ -0,0 +1,826 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "02b2d284",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os\n",
|
11 |
+
"\n",
|
12 |
+
"os.environ['CUDA_VISIBLE_DEVICES'] = '0'"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 2,
|
18 |
+
"id": "4966a667",
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"# !wget https://huggingface.co/huseinzol05/language-model-bahasa-manglish-combined/resolve/main/model.klm\n",
|
23 |
+
"# !pip3 install pyctcdecode==0.1.0 pypi-kenlm==0.1.20210121"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 3,
|
29 |
+
"id": "42d8d861",
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"name": "stderr",
|
34 |
+
"output_type": "stream",
|
35 |
+
"text": [
|
36 |
+
"/home/ubuntu/.local/lib/python3.8/site-packages/apex/pyprof/__init__.py:5: FutureWarning: pyprof will be removed by the end of June, 2022\n",
|
37 |
+
" warnings.warn(\"pyprof will be removed by the end of June, 2022\", FutureWarning)\n"
|
38 |
+
]
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"source": [
|
42 |
+
"import transformers\n",
|
43 |
+
"from transformers import (\n",
|
44 |
+
" HfArgumentParser,\n",
|
45 |
+
" Trainer,\n",
|
46 |
+
" TrainingArguments,\n",
|
47 |
+
" Wav2Vec2CTCTokenizer,\n",
|
48 |
+
" Wav2Vec2FeatureExtractor,\n",
|
49 |
+
" Wav2Vec2ForCTC,\n",
|
50 |
+
" Wav2Vec2Processor,\n",
|
51 |
+
" is_apex_available,\n",
|
52 |
+
" set_seed,\n",
|
53 |
+
" AutoModelForCTC,\n",
|
54 |
+
" TFWav2Vec2ForCTC,\n",
|
55 |
+
" TFWav2Vec2PreTrainedModel,\n",
|
56 |
+
" Wav2Vec2PreTrainedModel,\n",
|
57 |
+
")\n",
|
58 |
+
"from scipy.special import log_softmax"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 4,
|
64 |
+
"id": "0d6b421c",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"import torch"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 5,
|
74 |
+
"id": "060fb120",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"import string\n",
|
79 |
+
"import json\n",
|
80 |
+
"\n",
|
81 |
+
"CTC_VOCAB = [''] + list(string.ascii_lowercase + string.digits) + [' ']\n",
|
82 |
+
"vocab_dict = {v: k for k, v in enumerate(CTC_VOCAB)}\n",
|
83 |
+
"vocab_dict[\"|\"] = vocab_dict[\" \"]\n",
|
84 |
+
"del vocab_dict[\" \"]\n",
|
85 |
+
"vocab_dict[\"[UNK]\"] = len(vocab_dict)\n",
|
86 |
+
"vocab_dict[\"[PAD]\"] = len(vocab_dict)\n",
|
87 |
+
"\n",
|
88 |
+
"with open(\"ctc-vocab.json\", \"w\") as vocab_file:\n",
|
89 |
+
" json.dump(vocab_dict, vocab_file)\n",
|
90 |
+
"\n",
|
91 |
+
"tokenizer = Wav2Vec2CTCTokenizer(\n",
|
92 |
+
" \"ctc-vocab.json\",\n",
|
93 |
+
" unk_token=\"[UNK]\",\n",
|
94 |
+
" pad_token=\"[PAD]\",\n",
|
95 |
+
" word_delimiter_token=\"|\",\n",
|
96 |
+
")"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": 6,
|
102 |
+
"id": "c16b890f",
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [
|
105 |
+
{
|
106 |
+
"data": {
|
107 |
+
"text/plain": [
|
108 |
+
"(765, 3579, 614)"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
"execution_count": 6,
|
112 |
+
"metadata": {},
|
113 |
+
"output_type": "execute_result"
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"source": [
|
117 |
+
"from glob import glob\n",
|
118 |
+
"malay = sorted(glob('malay-test/*.wav'), key = lambda x: int(x.split('/')[1].replace('.wav', '')))\n",
|
119 |
+
"singlish = sorted(glob('singlish-test/*.wav'), key = lambda x: int(x.split('/')[1].replace('.wav', '')))\n",
|
120 |
+
"mandarin = sorted(glob('mandarin-test/*.wav'), key = lambda x: int(x.split('/')[1].replace('.wav', '')))\n",
|
121 |
+
"len(malay), len(singlish), len(mandarin)"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": 7,
|
127 |
+
"id": "29568a5f",
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [
|
130 |
+
{
|
131 |
+
"data": {
|
132 |
+
"text/plain": [
|
133 |
+
"(765, 3579, 614)"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
"execution_count": 7,
|
137 |
+
"metadata": {},
|
138 |
+
"output_type": "execute_result"
|
139 |
+
}
|
140 |
+
],
|
141 |
+
"source": [
|
142 |
+
"with open('malay-test.json') as fopen:\n",
|
143 |
+
" malay_label = json.load(fopen)\n",
|
144 |
+
"with open('singlish-test.json') as fopen:\n",
|
145 |
+
" singlish_label = json.load(fopen)\n",
|
146 |
+
"with open('mandarin-test.json') as fopen:\n",
|
147 |
+
" mandarin_label = json.load(fopen)\n",
|
148 |
+
" \n",
|
149 |
+
"len(malay_label), len(singlish_label), len(mandarin_label)"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": 8,
|
155 |
+
"id": "bdac1296",
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [
|
158 |
+
{
|
159 |
+
"data": {
|
160 |
+
"text/plain": [
|
161 |
+
"[('mandarin-test/460.wav', 'ting qi lai you dian xiang zai chang de na zhong'),\n",
|
162 |
+
" ('mandarin-test/256.wav', 'zai jia hao wu liao a'),\n",
|
163 |
+
" ('singlish-test/2169.wav', 'controlling our environment is important'),\n",
|
164 |
+
" ('mandarin-test/400.wav', 'bo fang gu zheng de ge qu'),\n",
|
165 |
+
" ('singlish-test/1001.wav', 'because they are the one that badly need it'),\n",
|
166 |
+
" ('singlish-test/4.wav',\n",
|
167 |
+
" 'rescuers who used what appeared to be makeshift stretchers to carry the injured'),\n",
|
168 |
+
" ('singlish-test/392.wav', 'i attached a mirror to my closet door'),\n",
|
169 |
+
" ('singlish-test/2563.wav', 'do you know the answer'),\n",
|
170 |
+
" ('singlish-test/799.wav',\n",
|
171 |
+
" 'this kind of packaging can pose a danger to animals'),\n",
|
172 |
+
" ('singlish-test/1165.wav',\n",
|
173 |
+
" 'a lot of parents ive spoken to say they dont have the luxury to do that')]"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
"execution_count": 8,
|
177 |
+
"metadata": {},
|
178 |
+
"output_type": "execute_result"
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"source": [
|
182 |
+
"from sklearn.utils import shuffle\n",
|
183 |
+
"\n",
|
184 |
+
"audio = malay + singlish + mandarin\n",
|
185 |
+
"labels = malay_label + singlish_label + mandarin_label\n",
|
186 |
+
"audio, labels = shuffle(audio, labels)\n",
|
187 |
+
"test_set = list(zip(audio, labels))\n",
|
188 |
+
"test_set[:10]"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"cell_type": "code",
|
193 |
+
"execution_count": 9,
|
194 |
+
"id": "69cb17cc",
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"import soundfile as sf\n",
|
199 |
+
"import numpy as np\n",
|
200 |
+
"\n",
|
201 |
+
"def norm_audio(x):\n",
|
202 |
+
" return (x - x.mean()) / np.sqrt(x.var() + 1e-7)\n",
|
203 |
+
"\n",
|
204 |
+
"def sequence_1d(\n",
|
205 |
+
" seq, maxlen=None, padding: str = 'post', pad_int=0, return_len=False\n",
|
206 |
+
"):\n",
|
207 |
+
" if padding not in ['post', 'pre']:\n",
|
208 |
+
" raise ValueError('padding only supported [`post`, `pre`]')\n",
|
209 |
+
"\n",
|
210 |
+
" if not maxlen:\n",
|
211 |
+
" maxlen = max([len(s) for s in seq])\n",
|
212 |
+
"\n",
|
213 |
+
" padded_seqs, length = [], []\n",
|
214 |
+
" for s in seq:\n",
|
215 |
+
" if isinstance(s, np.ndarray):\n",
|
216 |
+
" s = s.tolist()\n",
|
217 |
+
" if padding == 'post':\n",
|
218 |
+
" padded_seqs.append(s + [pad_int] * (maxlen - len(s)))\n",
|
219 |
+
" if padding == 'pre':\n",
|
220 |
+
" padded_seqs.append([pad_int] * (maxlen - len(s)) + s)\n",
|
221 |
+
" length.append(len(s))\n",
|
222 |
+
" if return_len:\n",
|
223 |
+
" return np.array(padded_seqs), length\n",
|
224 |
+
" return np.array(padded_seqs)\n",
|
225 |
+
"\n",
|
226 |
+
"def batching(audios):\n",
|
227 |
+
" audios = [sf.read(a)[0] for a in audios]\n",
|
228 |
+
" batch, lens = sequence_1d(audios,return_len=True)\n",
|
229 |
+
" attentions = [[1] * l for l in lens]\n",
|
230 |
+
" attentions = sequence_1d(attentions)\n",
|
231 |
+
" normed_input_values = []\n",
|
232 |
+
"\n",
|
233 |
+
" for vector, length in zip(batch, attentions.sum(-1)):\n",
|
234 |
+
" normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)\n",
|
235 |
+
" if length < normed_slice.shape[0]:\n",
|
236 |
+
" normed_slice[length:] = 0.0\n",
|
237 |
+
"\n",
|
238 |
+
" normed_input_values.append(normed_slice)\n",
|
239 |
+
"\n",
|
240 |
+
" normed_input_values = np.array(normed_input_values)\n",
|
241 |
+
" return normed_input_values.astype(np.float32), attentions"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"cell_type": "code",
|
246 |
+
"execution_count": 10,
|
247 |
+
"id": "f97f22e4",
|
248 |
+
"metadata": {},
|
249 |
+
"outputs": [],
|
250 |
+
"source": [
|
251 |
+
"model = AutoModelForCTC.from_pretrained(\n",
|
252 |
+
" './wav2vec2-mixed-v3/checkpoint-55000',\n",
|
253 |
+
" ctc_loss_reduction=\"mean\",\n",
|
254 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
255 |
+
" vocab_size=len(tokenizer),\n",
|
256 |
+
").cuda()"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": 11,
|
262 |
+
"id": "20fee479",
|
263 |
+
"metadata": {},
|
264 |
+
"outputs": [],
|
265 |
+
"source": [
|
266 |
+
"_ = model.eval()"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": 12,
|
272 |
+
"id": "51703510",
|
273 |
+
"metadata": {},
|
274 |
+
"outputs": [],
|
275 |
+
"source": [
|
276 |
+
"batch_size = 4\n",
|
277 |
+
"batch_x = audio[:batch_size]\n",
|
278 |
+
"normed_input_values, attentions = batching(batch_x)"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": 13,
|
284 |
+
"id": "065fce75",
|
285 |
+
"metadata": {},
|
286 |
+
"outputs": [],
|
287 |
+
"source": [
|
288 |
+
"o_pt = model(torch.from_numpy(normed_input_values.astype(np.float32)).cuda(), \n",
|
289 |
+
" attention_mask = torch.from_numpy(attentions).cuda())\n",
|
290 |
+
"o_pt = o_pt.logits.detach().cpu().numpy()\n",
|
291 |
+
"o_pt = log_softmax(o_pt, axis = -1)"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": 14,
|
297 |
+
"id": "b7851fc9",
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [
|
300 |
+
{
|
301 |
+
"data": {
|
302 |
+
"text/plain": [
|
303 |
+
"['ting qi lai you dian xiang zai chang de na zhong',\n",
|
304 |
+
" 'zai jia hao wu liao wa',\n",
|
305 |
+
" 'controlling our environment is important',\n",
|
306 |
+
" 'bo fang gu zheng de ge qu']"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
"execution_count": 14,
|
310 |
+
"metadata": {},
|
311 |
+
"output_type": "execute_result"
|
312 |
+
}
|
313 |
+
],
|
314 |
+
"source": [
|
315 |
+
"pred_ids = np.argmax(o_pt, axis = -1)\n",
|
316 |
+
"tokenizer.batch_decode(pred_ids)"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": 15,
|
322 |
+
"id": "3efd715e",
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"unique_vocab = list(vocab_dict.keys())\n",
|
327 |
+
"unique_vocab[-3] = ' ' \n",
|
328 |
+
"unique_vocab[-2] = '?'\n",
|
329 |
+
"unique_vocab[-1] = '_'"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"cell_type": "code",
|
334 |
+
"execution_count": 16,
|
335 |
+
"id": "3024298f",
|
336 |
+
"metadata": {},
|
337 |
+
"outputs": [],
|
338 |
+
"source": [
|
339 |
+
"from pyctcdecode import build_ctcdecoder\n",
|
340 |
+
"import kenlm\n",
|
341 |
+
"\n",
|
342 |
+
"kenlm_model = kenlm.Model('model.klm')\n",
|
343 |
+
"decoder = build_ctcdecoder(\n",
|
344 |
+
" unique_vocab,\n",
|
345 |
+
" kenlm_model,\n",
|
346 |
+
" alpha=0.2,\n",
|
347 |
+
" beta=1.0,\n",
|
348 |
+
" ctc_token_idx=tokenizer.pad_token_id\n",
|
349 |
+
")"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": 17,
|
355 |
+
"id": "6100ea60",
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [
|
358 |
+
{
|
359 |
+
"name": "stdout",
|
360 |
+
"output_type": "stream",
|
361 |
+
"text": [
|
362 |
+
"0 ting qi lai you dian xiang zai chang de na zhong\n",
|
363 |
+
"1 zai jia hao wu liao wa\n",
|
364 |
+
"2 controlling our environment is important\n",
|
365 |
+
"3 bo fang gu zheng de ge qu\n"
|
366 |
+
]
|
367 |
+
}
|
368 |
+
],
|
369 |
+
"source": [
|
370 |
+
"for k in range(len(o_pt)):\n",
|
371 |
+
" out = decoder.decode_beams(o_pt[k], prune_history=True)\n",
|
372 |
+
" d_lm2, lm_state, timesteps, logit_score, lm_score = out[0]\n",
|
373 |
+
" print(k, d_lm2)"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"cell_type": "code",
|
378 |
+
"execution_count": 18,
|
379 |
+
"id": "4672ac73",
|
380 |
+
"metadata": {},
|
381 |
+
"outputs": [
|
382 |
+
{
|
383 |
+
"data": {
|
384 |
+
"text/plain": [
|
385 |
+
"['ting qi lai you dian xiang zai chang de na zhong',\n",
|
386 |
+
" 'zai jia hao wu liao a',\n",
|
387 |
+
" 'controlling our environment is important',\n",
|
388 |
+
" 'bo fang gu zheng de ge qu']"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
"execution_count": 18,
|
392 |
+
"metadata": {},
|
393 |
+
"output_type": "execute_result"
|
394 |
+
}
|
395 |
+
],
|
396 |
+
"source": [
|
397 |
+
"labels[:batch_size]"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"cell_type": "code",
|
402 |
+
"execution_count": 19,
|
403 |
+
"id": "5d47692d",
|
404 |
+
"metadata": {},
|
405 |
+
"outputs": [],
|
406 |
+
"source": [
|
407 |
+
"def calculate_cer(actual, hyp):\n",
|
408 |
+
" \"\"\"\n",
|
409 |
+
" Calculate CER using `python-Levenshtein`.\n",
|
410 |
+
" \"\"\"\n",
|
411 |
+
" import Levenshtein as Lev\n",
|
412 |
+
"\n",
|
413 |
+
" actual = actual.replace(' ', '')\n",
|
414 |
+
" hyp = hyp.replace(' ', '')\n",
|
415 |
+
" return Lev.distance(actual, hyp) / len(actual)\n",
|
416 |
+
"\n",
|
417 |
+
"\n",
|
418 |
+
"def calculate_wer(actual, hyp):\n",
|
419 |
+
" \"\"\"\n",
|
420 |
+
" Calculate WER using `python-Levenshtein`.\n",
|
421 |
+
" \"\"\"\n",
|
422 |
+
" import Levenshtein as Lev\n",
|
423 |
+
"\n",
|
424 |
+
" b = set(actual.split() + hyp.split())\n",
|
425 |
+
" word2char = dict(zip(b, range(len(b))))\n",
|
426 |
+
"\n",
|
427 |
+
" w1 = [chr(word2char[w]) for w in actual.split()]\n",
|
428 |
+
" w2 = [chr(word2char[w]) for w in hyp.split()]\n",
|
429 |
+
"\n",
|
430 |
+
" return Lev.distance(''.join(w1), ''.join(w2)) / len(actual.split())"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"execution_count": 20,
|
436 |
+
"id": "c01ea2e4",
|
437 |
+
"metadata": {},
|
438 |
+
"outputs": [
|
439 |
+
{
|
440 |
+
"name": "stderr",
|
441 |
+
"output_type": "stream",
|
442 |
+
"text": [
|
443 |
+
"100%|██████████| 1240/1240 [04:27<00:00, 4.63it/s]\n"
|
444 |
+
]
|
445 |
+
}
|
446 |
+
],
|
447 |
+
"source": [
|
448 |
+
"from tqdm import tqdm\n",
|
449 |
+
"\n",
|
450 |
+
"wer, cer = [], []\n",
|
451 |
+
"wer_lm, cer_lm = [], []\n",
|
452 |
+
"\n",
|
453 |
+
"for i in tqdm(range(0, len(audio), batch_size)):\n",
|
454 |
+
" torch.cuda.empty_cache()\n",
|
455 |
+
" \n",
|
456 |
+
" batch_x = audio[i: i + batch_size]\n",
|
457 |
+
" batch_y = labels[i: i + batch_size]\n",
|
458 |
+
" normed_input_values, attentions = batching(batch_x)\n",
|
459 |
+
" inputs = torch.from_numpy(normed_input_values.astype(np.float32)).cuda()\n",
|
460 |
+
" attention_mask = torch.from_numpy(attentions).cuda()\n",
|
461 |
+
" o_pt = model(inputs, attention_mask = attention_mask)\n",
|
462 |
+
" o_pt = o_pt.logits.detach().cpu().numpy()\n",
|
463 |
+
" o_pt = log_softmax(o_pt, axis = -1)\n",
|
464 |
+
" pred_ids = np.argmax(o_pt, axis = -1)\n",
|
465 |
+
" pred = tokenizer.batch_decode(pred_ids)\n",
|
466 |
+
" for k in range(len(o_pt)):\n",
|
467 |
+
" out = decoder.decode_beams(o_pt[k], prune_history=True)\n",
|
468 |
+
" d_lm2, lm_state, timesteps, logit_score, lm_score = out[0]\n",
|
469 |
+
" \n",
|
470 |
+
" wer.append(calculate_wer(batch_y[k], pred[k]))\n",
|
471 |
+
" cer.append(calculate_cer(batch_y[k], pred[k]))\n",
|
472 |
+
" \n",
|
473 |
+
" wer_lm.append(calculate_wer(batch_y[k], d_lm2))\n",
|
474 |
+
" cer_lm.append(calculate_cer(batch_y[k], d_lm2))\n",
|
475 |
+
" \n",
|
476 |
+
" "
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"cell_type": "code",
|
481 |
+
"execution_count": 21,
|
482 |
+
"id": "6c6ce8ef",
|
483 |
+
"metadata": {},
|
484 |
+
"outputs": [
|
485 |
+
{
|
486 |
+
"data": {
|
487 |
+
"text/plain": [
|
488 |
+
"(0.14251665517797765,\n",
|
489 |
+
" 0.05082346216269688,\n",
|
490 |
+
" 0.10380217528405207,\n",
|
491 |
+
" 0.042868860764264445)"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
"execution_count": 21,
|
495 |
+
"metadata": {},
|
496 |
+
"output_type": "execute_result"
|
497 |
+
}
|
498 |
+
],
|
499 |
+
"source": [
|
500 |
+
"np.mean(wer), np.mean(cer), np.mean(wer_lm), np.mean(cer_lm)"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"cell_type": "code",
|
505 |
+
"execution_count": 22,
|
506 |
+
"id": "cf53914e",
|
507 |
+
"metadata": {},
|
508 |
+
"outputs": [],
|
509 |
+
"source": [
|
510 |
+
"index_malay = [no for no, i in enumerate(audio) if 'malay-test/' in i]\n",
|
511 |
+
"index_singlish = [no for no, i in enumerate(audio) if 'singlish-test/' in i]\n",
|
512 |
+
"index_mandarin = [no for no, i in enumerate(audio) if 'mandarin-test/' in i]"
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"cell_type": "code",
|
517 |
+
"execution_count": 23,
|
518 |
+
"id": "b1558987",
|
519 |
+
"metadata": {},
|
520 |
+
"outputs": [
|
521 |
+
{
|
522 |
+
"data": {
|
523 |
+
"text/plain": [
|
524 |
+
"(0.21723938552369926,\n",
|
525 |
+
" 0.05027226867066105,\n",
|
526 |
+
" 0.13593624603428525,\n",
|
527 |
+
" 0.03601546154013878)"
|
528 |
+
]
|
529 |
+
},
|
530 |
+
"execution_count": 23,
|
531 |
+
"metadata": {},
|
532 |
+
"output_type": "execute_result"
|
533 |
+
}
|
534 |
+
],
|
535 |
+
"source": [
|
536 |
+
"np.mean(np.array(wer)[index_malay]), np.mean(np.array(cer)[index_malay]), np.mean(np.array(wer_lm)[index_malay]), np.mean(np.array(cer_lm)[index_malay])"
|
537 |
+
]
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"cell_type": "code",
|
541 |
+
"execution_count": 24,
|
542 |
+
"id": "f340cde7",
|
543 |
+
"metadata": {},
|
544 |
+
"outputs": [
|
545 |
+
{
|
546 |
+
"data": {
|
547 |
+
"text/plain": [
|
548 |
+
"(0.1331819722523124,\n",
|
549 |
+
" 0.05161275767676772,\n",
|
550 |
+
" 0.09859626021111582,\n",
|
551 |
+
" 0.04419848182804781)"
|
552 |
+
]
|
553 |
+
},
|
554 |
+
"execution_count": 24,
|
555 |
+
"metadata": {},
|
556 |
+
"output_type": "execute_result"
|
557 |
+
}
|
558 |
+
],
|
559 |
+
"source": [
|
560 |
+
"np.mean(np.array(wer)[index_singlish]), np.mean(np.array(cer)[index_singlish]), np.mean(np.array(wer_lm)[index_singlish]), np.mean(np.array(cer_lm)[index_singlish])"
|
561 |
+
]
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"cell_type": "code",
|
565 |
+
"execution_count": 25,
|
566 |
+
"id": "cbc2539f",
|
567 |
+
"metadata": {},
|
568 |
+
"outputs": [
|
569 |
+
{
|
570 |
+
"data": {
|
571 |
+
"text/plain": [
|
572 |
+
"(0.10382926344585862,\n",
|
573 |
+
" 0.04690941391603209,\n",
|
574 |
+
" 0.09411065398455744,\n",
|
575 |
+
" 0.0436573568867001)"
|
576 |
+
]
|
577 |
+
},
|
578 |
+
"execution_count": 25,
|
579 |
+
"metadata": {},
|
580 |
+
"output_type": "execute_result"
|
581 |
+
}
|
582 |
+
],
|
583 |
+
"source": [
|
584 |
+
"np.mean(np.array(wer)[index_mandarin]), np.mean(np.array(cer)[index_mandarin]), np.mean(np.array(wer_lm)[index_mandarin]), np.mean(np.array(cer_lm)[index_mandarin])"
|
585 |
+
]
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"cell_type": "code",
|
589 |
+
"execution_count": 26,
|
590 |
+
"id": "4c543d0c",
|
591 |
+
"metadata": {},
|
592 |
+
"outputs": [
|
593 |
+
{
|
594 |
+
"name": "stderr",
|
595 |
+
"output_type": "stream",
|
596 |
+
"text": [
|
597 |
+
"/home/ubuntu/.local/lib/python3.8/site-packages/huggingface_hub/utils/_deprecation.py:39: FutureWarning: Pass token='wav2vec2-xls-r-300m-mixed' as keyword args. From version 0.7 passing these as positional arguments will result in an error\n",
|
598 |
+
" warnings.warn(\n",
|
599 |
+
"/home/ubuntu/.local/lib/python3.8/site-packages/huggingface_hub/hf_api.py:79: FutureWarning: `name` and `organization` input arguments are deprecated and will be removed in v0.7. Pass `repo_id` instead.\n",
|
600 |
+
" warnings.warn(\n",
|
601 |
+
"/home/ubuntu/.local/lib/python3.8/site-packages/huggingface_hub/hf_api.py:596: FutureWarning: `create_repo` now takes `token` as an optional positional argument. Be sure to adapt your code!\n",
|
602 |
+
" warnings.warn(\n",
|
603 |
+
"Cloning https://huggingface.co/mesolitica/wav2vec2-xls-r-300m-mixed into local empty directory.\n"
|
604 |
+
]
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"data": {
|
608 |
+
"application/vnd.jupyter.widget-view+json": {
|
609 |
+
"model_id": "10c88b815c83447b9d04f297f54fe1d9",
|
610 |
+
"version_major": 2,
|
611 |
+
"version_minor": 0
|
612 |
+
},
|
613 |
+
"text/plain": [
|
614 |
+
"Upload file pytorch_model.bin: 0%| | 4.00k/1.18G [00:00<?, ?B/s]"
|
615 |
+
]
|
616 |
+
},
|
617 |
+
"metadata": {},
|
618 |
+
"output_type": "display_data"
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"name": "stderr",
|
622 |
+
"output_type": "stream",
|
623 |
+
"text": [
|
624 |
+
"remote: Enforcing permissions... \n",
|
625 |
+
"remote: Allowed refs: all \n",
|
626 |
+
"To https://huggingface.co/mesolitica/wav2vec2-xls-r-300m-mixed\n",
|
627 |
+
" 33df917..7044629 main -> main\n",
|
628 |
+
"\n"
|
629 |
+
]
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"data": {
|
633 |
+
"text/plain": [
|
634 |
+
"'https://huggingface.co/mesolitica/wav2vec2-xls-r-300m-mixed/commit/7044629625df853dec50f463f6b794afe61d391f'"
|
635 |
+
]
|
636 |
+
},
|
637 |
+
"execution_count": 26,
|
638 |
+
"metadata": {},
|
639 |
+
"output_type": "execute_result"
|
640 |
+
}
|
641 |
+
],
|
642 |
+
"source": [
|
643 |
+
"model.push_to_hub('wav2vec2-xls-r-300m-mixed', organization='mesolitica')"
|
644 |
+
]
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"cell_type": "code",
|
648 |
+
"execution_count": 27,
|
649 |
+
"id": "05ec385e",
|
650 |
+
"metadata": {},
|
651 |
+
"outputs": [
|
652 |
+
{
|
653 |
+
"name": "stderr",
|
654 |
+
"output_type": "stream",
|
655 |
+
"text": [
|
656 |
+
"2022-06-01 09:29:07.148431: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
|
657 |
+
"2022-06-01 09:29:07.191068: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
|
658 |
+
"2022-06-01 09:29:07.192882: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
|
659 |
+
"2022-06-01 09:29:07.194967: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n",
|
660 |
+
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
661 |
+
"2022-06-01 09:29:07.196435: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
|
662 |
+
"2022-06-01 09:29:07.197071: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
|
663 |
+
"2022-06-01 09:29:07.197672: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
|
664 |
+
"2022-06-01 09:29:07.199082: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
|
665 |
+
"2022-06-01 09:29:07.199700: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
|
666 |
+
"2022-06-01 09:29:07.200318: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\n",
|
667 |
+
"2022-06-01 09:29:07.201032: W tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:39] Overriding allow_growth setting because the TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original config value was 0.\n",
|
668 |
+
"2022-06-01 09:29:07.201159: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 17325 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3090 Ti, pci bus id: 0000:01:00.0, compute capability: 8.6\n",
|
669 |
+
"\n",
|
670 |
+
"TFWav2Vec2ForCTC has backpropagation operations that are NOT supported on CPU. If you wish to train/fine-tine this model, you need a GPU or a TPU\n",
|
671 |
+
"2022-06-01 09:29:09.085113: I tensorflow/stream_executor/cuda/cuda_dnn.cc:369] Loaded cuDNN version 8100\n",
|
672 |
+
"2022-06-01 09:29:09.930887: I tensorflow/core/platform/default/subprocess.cc:304] Start cannot spawn child process: No such file or directory\n",
|
673 |
+
"2022-06-01 09:29:10.708302: I tensorflow/stream_executor/cuda/cuda_blas.cc:1760] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.\n",
|
674 |
+
"All PyTorch model weights were used when initializing TFWav2Vec2ForCTC.\n",
|
675 |
+
"\n",
|
676 |
+
"All the weights of TFWav2Vec2ForCTC were initialized from the PyTorch model.\n",
|
677 |
+
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFWav2Vec2ForCTC for predictions without further training.\n"
|
678 |
+
]
|
679 |
+
}
|
680 |
+
],
|
681 |
+
"source": [
|
682 |
+
"model_tf = TFWav2Vec2ForCTC.from_pretrained(\n",
|
683 |
+
" './wav2vec2-mixed-v3/checkpoint-55000',\n",
|
684 |
+
" ctc_loss_reduction=\"mean\",\n",
|
685 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
686 |
+
" vocab_size=len(tokenizer),\n",
|
687 |
+
" from_pt=True,\n",
|
688 |
+
")"
|
689 |
+
]
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"cell_type": "code",
|
693 |
+
"execution_count": 28,
|
694 |
+
"id": "e0f3f749",
|
695 |
+
"metadata": {},
|
696 |
+
"outputs": [
|
697 |
+
{
|
698 |
+
"name": "stderr",
|
699 |
+
"output_type": "stream",
|
700 |
+
"text": [
|
701 |
+
"2022-06-01 09:29:38.885075: W tensorflow/core/framework/cpu_allocator_impl.cc:80] Allocation of 33554432 exceeds 10% of free system memory.\n"
|
702 |
+
]
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"data": {
|
706 |
+
"application/vnd.jupyter.widget-view+json": {
|
707 |
+
"model_id": "f70276237419473091977e7dcd4da591",
|
708 |
+
"version_major": 2,
|
709 |
+
"version_minor": 0
|
710 |
+
},
|
711 |
+
"text/plain": [
|
712 |
+
"Upload file tf_model.h5: 0%| | 4.00k/1.18G [00:00<?, ?B/s]"
|
713 |
+
]
|
714 |
+
},
|
715 |
+
"metadata": {},
|
716 |
+
"output_type": "display_data"
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"name": "stderr",
|
720 |
+
"output_type": "stream",
|
721 |
+
"text": [
|
722 |
+
"remote: Enforcing permissions... \n",
|
723 |
+
"remote: Allowed refs: all \n",
|
724 |
+
"To https://huggingface.co/mesolitica/wav2vec2-xls-r-300m-mixed\n",
|
725 |
+
" 7044629..86e9f45 main -> main\n",
|
726 |
+
"\n"
|
727 |
+
]
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"data": {
|
731 |
+
"text/plain": [
|
732 |
+
"'https://huggingface.co/mesolitica/wav2vec2-xls-r-300m-mixed/commit/86e9f450fa80b3f51175f04f694b35f342a6a09e'"
|
733 |
+
]
|
734 |
+
},
|
735 |
+
"execution_count": 28,
|
736 |
+
"metadata": {},
|
737 |
+
"output_type": "execute_result"
|
738 |
+
}
|
739 |
+
],
|
740 |
+
"source": [
|
741 |
+
"model_tf.push_to_hub('wav2vec2-xls-r-300m-mixed', organization='mesolitica')"
|
742 |
+
]
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"cell_type": "code",
|
746 |
+
"execution_count": 30,
|
747 |
+
"id": "999b8b28",
|
748 |
+
"metadata": {},
|
749 |
+
"outputs": [],
|
750 |
+
"source": [
|
751 |
+
"tokenizer = Wav2Vec2CTCTokenizer(\n",
|
752 |
+
" \"ctc-vocab.json\",\n",
|
753 |
+
" unk_token=\"[UNK]\",\n",
|
754 |
+
" pad_token=\"[PAD]\",\n",
|
755 |
+
" word_delimiter_token=\"|\",\n",
|
756 |
+
")"
|
757 |
+
]
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"cell_type": "code",
|
761 |
+
"execution_count": 31,
|
762 |
+
"id": "54a3285e",
|
763 |
+
"metadata": {},
|
764 |
+
"outputs": [],
|
765 |
+
"source": [
|
766 |
+
"feature_extractor = Wav2Vec2FeatureExtractor(\n",
|
767 |
+
" feature_size=1, sampling_rate=16_000, padding_value=0.0, do_normalize=True, return_attention_mask=True\n",
|
768 |
+
")\n",
|
769 |
+
"processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)"
|
770 |
+
]
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"cell_type": "code",
|
774 |
+
"execution_count": 32,
|
775 |
+
"id": "b4bf1a21",
|
776 |
+
"metadata": {},
|
777 |
+
"outputs": [
|
778 |
+
{
|
779 |
+
"name": "stderr",
|
780 |
+
"output_type": "stream",
|
781 |
+
"text": [
|
782 |
+
"remote: Enforcing permissions... \n",
|
783 |
+
"remote: Allowed refs: all \n",
|
784 |
+
"To https://huggingface.co/mesolitica/wav2vec2-xls-r-300m-mixed\n",
|
785 |
+
" 86e9f45..adf6534 main -> main\n",
|
786 |
+
"\n"
|
787 |
+
]
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"data": {
|
791 |
+
"text/plain": [
|
792 |
+
"'https://huggingface.co/mesolitica/wav2vec2-xls-r-300m-mixed/commit/adf65347379e5902f7488753aef24d4e9d16daff'"
|
793 |
+
]
|
794 |
+
},
|
795 |
+
"execution_count": 32,
|
796 |
+
"metadata": {},
|
797 |
+
"output_type": "execute_result"
|
798 |
+
}
|
799 |
+
],
|
800 |
+
"source": [
|
801 |
+
"processor.push_to_hub('wav2vec2-xls-r-300m-mixed', organization='mesolitica')"
|
802 |
+
]
|
803 |
+
}
|
804 |
+
],
|
805 |
+
"metadata": {
|
806 |
+
"kernelspec": {
|
807 |
+
"display_name": "Python 3 (ipykernel)",
|
808 |
+
"language": "python",
|
809 |
+
"name": "python3"
|
810 |
+
},
|
811 |
+
"language_info": {
|
812 |
+
"codemirror_mode": {
|
813 |
+
"name": "ipython",
|
814 |
+
"version": 3
|
815 |
+
},
|
816 |
+
"file_extension": ".py",
|
817 |
+
"mimetype": "text/x-python",
|
818 |
+
"name": "python",
|
819 |
+
"nbconvert_exporter": "python",
|
820 |
+
"pygments_lexer": "ipython3",
|
821 |
+
"version": "3.8.10"
|
822 |
+
}
|
823 |
+
},
|
824 |
+
"nbformat": 4,
|
825 |
+
"nbformat_minor": 5
|
826 |
+
}
|