messham commited on
Commit
f2eb91f
·
1 Parent(s): 45f886c

Push trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.86 +/- 20.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f64af687ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f64af687d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64af687dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f64af687e50>", "_build": "<function ActorCriticPolicy._build at 0x7f64af687ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f64af687f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f64af68b040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f64af68b0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f64af68b160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f64af68b1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64af68b280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f64af684480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671288174750983370, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGbpZL6aXSa9FQokOvvg9DiTSJA+07RpuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+Ppal5ohb0CUhpRSlIwBbJRNUgGMAXSUR0Cehc4ubqhUdX2UKGgGaAloD0MI7Es2Hmw1b0CUhpRSlGgVTQ4BaBZHQJ6HgV58jRl1fZQoaAZoCWgPQwisb2By4y9wQJSGlFKUaBVNHAFoFkdAnopxMewLVnV9lChoBmgJaA9DCAOYMnAAInFAlIaUUpRoFU0PAWgWR0CejB/t6X0HdX2UKGgGaAloD0MIrOXOTPCccECUhpRSlGgVTTYBaBZHQJ6OBBcAzYV1fZQoaAZoCWgPQwjMQ6Z8SG5xQJSGlFKUaBVNygFoFkdAnpMBXfZVXHV9lChoBmgJaA9DCIDz4sRX0lBAlIaUUpRoFUvjaBZHQJ6UsPsiSq51fZQoaAZoCWgPQwj3IW+5OmNwQJSGlFKUaBVNHAFoFkdAnpcRBZ6lcnV9lChoBmgJaA9DCH5Uw36PTnBAlIaUUpRoFU1/AWgWR0CemoMuOCGvdX2UKGgGaAloD0MIYhIu5JGma0CUhpRSlGgVTToBaBZHQJ6ebrt3OfN1fZQoaAZoCWgPQwgYIxKFlrduQJSGlFKUaBVNGAFoFkdAnqAUwztTk3V9lChoBmgJaA9DCGiXb30Ym3FAlIaUUpRoFU1QAWgWR0CeoiPLgXMydX2UKGgGaAloD0MINSbEXFKfcUCUhpRSlGgVTSIBaBZHQJ6k65VfeDZ1fZQoaAZoCWgPQwj5ugz/KbJwQJSGlFKUaBVNJgFoFkdAnqamsA/9pHV9lChoBmgJaA9DCMprJXRXJHJAlIaUUpRoFU0xAWgWR0CeqFKJVKf4dX2UKGgGaAloD0MIyXTo9DzDckCUhpRSlGgVTSMBaBZHQJ6rMv6CUX51fZQoaAZoCWgPQwgwDi4dMxZyQJSGlFKUaBVNaQFoFkdAnq1Ef1YhdXV9lChoBmgJaA9DCPPK9bYZ3HFAlIaUUpRoFU1iAWgWR0Cer1Zcs189dX2UKGgGaAloD0MIhCugUA96cECUhpRSlGgVTSoBaBZHQJ6ySXOW0JF1fZQoaAZoCWgPQwggelImNaVxQJSGlFKUaBVNOwFoFkdAnrQOk56t1nV9lChoBmgJaA9DCHRC6KBLzXFAlIaUUpRoFU1ZAWgWR0Cetj003wTedX2UKGgGaAloD0MIf6SIDKuccUCUhpRSlGgVTSUBaBZHQJ64D3ueBhB1fZQoaAZoCWgPQwiqmiDqfsZwQJSGlFKUaBVNLgFoFkdAnrsoKIBRynV9lChoBmgJaA9DCGpMiLkktXFAlIaUUpRoFU0iAWgWR0CevNxL0z0pdX2UKGgGaAloD0MI7bYLzXV2cECUhpRSlGgVTQUBaBZHQJ6+Uv24/eN1fZQoaAZoCWgPQwgHX5hMlRlxQJSGlFKUaBVNFAFoFkdAnsEhYeT3ZnV9lChoBmgJaA9DCNwODYuR/3BAlIaUUpRoFU1GAWgWR0Cew0Mt9QXRdX2UKGgGaAloD0MI7zzxnC0dcUCUhpRSlGgVTRoBaBZHQJ7E2dz4k/t1fZQoaAZoCWgPQwjjUwCM5ztrQJSGlFKUaBVNjgFoFkdAnsjDwx33YnV9lChoBmgJaA9DCJ+sGK4OlnJAlIaUUpRoFU0sAWgWR0CeyorPt2LYdX2UKGgGaAloD0MIRyHJrJ70cUCUhpRSlGgVTUkBaBZHQJ7Mes1baAZ1fZQoaAZoCWgPQwjFOlW+Z5VxQJSGlFKUaBVNLgFoFkdAns51beMyanV9lChoBmgJaA9DCDULtDskp2tAlIaUUpRoFU0kAWgWR0Ce0XbCrLhadX2UKGgGaAloD0MI6dfWT39CZECUhpRSlGgVTfsBaBZHQJ7U2/SH/Ll1fZQoaAZoCWgPQwjSU+QQcZRyQJSGlFKUaBVNJgFoFkdAntaASSNfgXV9lChoBmgJaA9DCIFc4siDhG5AlIaUUpRoFU0LAWgWR0Ce2TvSMLncdX2UKGgGaAloD0MI08H6P4dDTUCUhpRSlGgVS8toFkdAntpPpD/lyXV9lChoBmgJaA9DCMTqjzCMdXBAlIaUUpRoFU1DAWgWR0Ce3EuxbB42dX2UKGgGaAloD0MI7N0f79XRcECUhpRSlGgVTQQBaBZHQJ7fKpYLb6B1fZQoaAZoCWgPQwjD19e61OpAQJSGlFKUaBVL2mgWR0Ce4Fv0yxiYdX2UKGgGaAloD0MIIhecwV/fckCUhpRSlGgVTbIBaBZHQJ7i34Ju2ql1fZQoaAZoCWgPQwjl795RY5ZtQJSGlFKUaBVNEwFoFkdAnuRlaB7NS3V9lChoBmgJaA9DCEpE+BdBOW9AlIaUUpRoFU0dAWgWR0Ce5y2OhkAhdX2UKGgGaAloD0MICDvFqoHucUCUhpRSlGgVTSIBaBZHQJ7oxqh11W91fZQoaAZoCWgPQwjEmPT3kiZzQJSGlFKUaBVNIQFoFkdAnupf1Hvtt3V9lChoBmgJaA9DCA5rKovCFnFAlIaUUpRoFU0zAWgWR0Ce7VJhvze5dX2UKGgGaAloD0MIxsGlY87nSUCUhpRSlGgVS8hoFkdAnu5jxkNF0HV9lChoBmgJaA9DCGq932jHjW9AlIaUUpRoFU0dAWgWR0Ce8A6cAimmdX2UKGgGaAloD0MILnWQ18OucUCUhpRSlGgVTQQBaBZHQJ7xet8uzyB1fZQoaAZoCWgPQwjZCpqW2FNvQJSGlFKUaBVNDwFoFkdAnvQrSmZVn3V9lChoBmgJaA9DCHxD4bP1lnFAlIaUUpRoFU0HAWgWR0Ce9a+fywwCdX2UKGgGaAloD0MIe/oI/KG3cUCUhpRSlGgVS/xoFkdAnvciWJJoTXV9lChoBmgJaA9DCF2HakqymnFAlIaUUpRoFU0dAWgWR0Ce+MT7EYO2dX2UKGgGaAloD0MIrAK1GLzXbkCUhpRSlGgVTR4BaBZHQJ77mQKa5PN1fZQoaAZoCWgPQwi7fVaZ6UtxQJSGlFKUaBVNHwFoFkdAnv0tj9XLeXV9lChoBmgJaA9DCBu4A3XK1XBAlIaUUpRoFUv0aBZHQJ7+ijIq9Xd1fZQoaAZoCWgPQwi4kbJFUgRqQJSGlFKUaBVNZQFoFkdAnwDZAQg9vHV9lChoBmgJaA9DCEJ8YMd/FW9AlIaUUpRoFU0WAWgWR0CfA70pmVZ+dX2UKGgGaAloD0MIwtmtZTLMcUCUhpRSlGgVTSABaBZHQJ8FbkBCD291fZQoaAZoCWgPQwhkr3d/fEZxQJSGlFKUaBVNagFoFkdAnwd1o11nunV9lChoBmgJaA9DCCJUqdkDP0dAlIaUUpRoFUvLaBZHQJ8JwlRgqmV1fZQoaAZoCWgPQwj27LlMDU9wQJSGlFKUaBVNGQFoFkdAnwtlaB7NS3V9lChoBmgJaA9DCNmVlpH62m9AlIaUUpRoFU0ZAWgWR0CfDQAwPAfudX2UKGgGaAloD0MIgGWlSSnQKUCUhpRSlGgVS/poFkdAnw5t0A93bHV9lChoBmgJaA9DCNxoAG+B5W1AlIaUUpRoFU0KAWgWR0CfETNrTH81dX2UKGgGaAloD0MIWfrQBfW5cUCUhpRSlGgVTZIBaBZHQJ8T6hew9q11fZQoaAZoCWgPQwgFGJY/X1JvQJSGlFKUaBVNPAFoFkdAnxXCSmqHXXV9lChoBmgJaA9DCHLEWnwK8lNAlIaUUpRoFUvbaBZHQJ8YcFjd56d1fZQoaAZoCWgPQwg2I4PcRfRuQJSGlFKUaBVNNwFoFkdAnxpDJZGKAXV9lChoBmgJaA9DCI6vPbNks3FAlIaUUpRoFU0iAWgWR0CfG/xOLzf8dX2UKGgGaAloD0MIuYrFbwoxbUCUhpRSlGgVTSIBaBZHQJ8dw0uUUwl1fZQoaAZoCWgPQwgxlX7CmWNwQJSGlFKUaBVNCgFoFkdAnyCUzsQd0nV9lChoBmgJaA9DCCmuKvtuDXBAlIaUUpRoFU0xAWgWR0CfImEJ0GNadX2UKGgGaAloD0MIL6NYbmnCa0CUhpRSlGgVTXsBaBZHQJ8k4sH0K7Z1fZQoaAZoCWgPQwhDyeTUjh5yQJSGlFKUaBVNHQFoFkdAnye0VvddmnV9lChoBmgJaA9DCBOdZRbhDHJAlIaUUpRoFU1nAWgWR0CfKfgs9SuRdX2UKGgGaAloD0MIpmJjXsdHcECUhpRSlGgVTRABaBZHQJ8rfBxgiNd1fZQoaAZoCWgPQwguBDkoIWtwQJSGlFKUaBVNNgFoFkdAny6ZU1hsqXV9lChoBmgJaA9DCKQYINHEwnBAlIaUUpRoFU0qAWgWR0CfMG4iosI3dX2UKGgGaAloD0MIVBuciL53cUCUhpRSlGgVTTABaBZHQJ8yLH80k4Z1fZQoaAZoCWgPQwjd09UdC+dvQJSGlFKUaBVNNgFoFkdAnzP1R51Ng3V9lChoBmgJaA9DCI4B2etdP3JAlIaUUpRoFU1jAWgWR0CfNybA1vVFdX2UKGgGaAloD0MIdelfkkrAcECUhpRSlGgVTREBaBZHQJ84v3h4t6J1fZQoaAZoCWgPQwg6I0p7A6puQJSGlFKUaBVNLQFoFkdAnzpqQq7ROXV9lChoBmgJaA9DCAr3yrwViXFAlIaUUpRoFU07AWgWR0CfPVnCO3lTdX2UKGgGaAloD0MIui784HzaRkCUhpRSlGgVS9poFkdAnz5/egte2XV9lChoBmgJaA9DCKkWEcUkPnBAlIaUUpRoFU0FAWgWR0CfQBpwCKaYdX2UKGgGaAloD0MIt7WF5+WecUCUhpRSlGgVTTABaBZHQJ9B3mITGo91fZQoaAZoCWgPQwjHvfkNE6dxQJSGlFKUaBVNBgFoFkdAn0SOMqBmPHV9lChoBmgJaA9DCEkUWtZ9Vm1AlIaUUpRoFU09AWgWR0CfRqH7P6bfdX2UKGgGaAloD0MIUfUrnU9rckCUhpRSlGgVTRoBaBZHQJ9IWXqqwQl1fZQoaAZoCWgPQwjYLJeNDvlxQJSGlFKUaBVNGQFoFkdAn0tHHR1HOXV9lChoBmgJaA9DCCkg7X9AeHJAlIaUUpRoFU0iAWgWR0CfTQl8gIQfdX2UKGgGaAloD0MIYcWp1gIkcECUhpRSlGgVTSQBaBZHQJ9OytuDSPV1fZQoaAZoCWgPQwjnOSLfpVNwQJSGlFKUaBVNFwFoFkdAn1BmO2iL23V9lChoBmgJaA9DCFpj0AlhhnFAlIaUUpRoFU0fAWgWR0CfU1NwR5C4dX2UKGgGaAloD0MIZDxKJbyEcUCUhpRSlGgVTQ4BaBZHQJ9U32M85jp1fZQoaAZoCWgPQwjajqm78nxwQJSGlFKUaBVNQQFoFkdAn1bktNBWxXV9lChoBmgJaA9DCPfMkgB1NnFAlIaUUpRoFU0lAWgWR0CfWdaCtihGdX2UKGgGaAloD0MI0lJ5O4JRckCUhpRSlGgVTSABaBZHQJ9bj8YQ8Ol1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b33bde642eb4f0d6ea4aec84d51a23c5c5a52ebc27f71c75ebec8e96251e9a8
3
+ size 146548
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f64af687ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f64af687d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64af687dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f64af687e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f64af687ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f64af687f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f64af68b040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f64af68b0d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f64af68b160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f64af68b1f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64af68b280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f64af684480>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1000448,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671288174750983370,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGbpZL6aXSa9FQokOvvg9DiTSJA+07RpuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00044800000000000395,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+Ppal5ohb0CUhpRSlIwBbJRNUgGMAXSUR0Cehc4ubqhUdX2UKGgGaAloD0MI7Es2Hmw1b0CUhpRSlGgVTQ4BaBZHQJ6HgV58jRl1fZQoaAZoCWgPQwisb2By4y9wQJSGlFKUaBVNHAFoFkdAnopxMewLVnV9lChoBmgJaA9DCAOYMnAAInFAlIaUUpRoFU0PAWgWR0CejB/t6X0HdX2UKGgGaAloD0MIrOXOTPCccECUhpRSlGgVTTYBaBZHQJ6OBBcAzYV1fZQoaAZoCWgPQwjMQ6Z8SG5xQJSGlFKUaBVNygFoFkdAnpMBXfZVXHV9lChoBmgJaA9DCIDz4sRX0lBAlIaUUpRoFUvjaBZHQJ6UsPsiSq51fZQoaAZoCWgPQwj3IW+5OmNwQJSGlFKUaBVNHAFoFkdAnpcRBZ6lcnV9lChoBmgJaA9DCH5Uw36PTnBAlIaUUpRoFU1/AWgWR0CemoMuOCGvdX2UKGgGaAloD0MIYhIu5JGma0CUhpRSlGgVTToBaBZHQJ6ebrt3OfN1fZQoaAZoCWgPQwgYIxKFlrduQJSGlFKUaBVNGAFoFkdAnqAUwztTk3V9lChoBmgJaA9DCGiXb30Ym3FAlIaUUpRoFU1QAWgWR0CeoiPLgXMydX2UKGgGaAloD0MINSbEXFKfcUCUhpRSlGgVTSIBaBZHQJ6k65VfeDZ1fZQoaAZoCWgPQwj5ugz/KbJwQJSGlFKUaBVNJgFoFkdAnqamsA/9pHV9lChoBmgJaA9DCMprJXRXJHJAlIaUUpRoFU0xAWgWR0CeqFKJVKf4dX2UKGgGaAloD0MIyXTo9DzDckCUhpRSlGgVTSMBaBZHQJ6rMv6CUX51fZQoaAZoCWgPQwgwDi4dMxZyQJSGlFKUaBVNaQFoFkdAnq1Ef1YhdXV9lChoBmgJaA9DCPPK9bYZ3HFAlIaUUpRoFU1iAWgWR0Cer1Zcs189dX2UKGgGaAloD0MIhCugUA96cECUhpRSlGgVTSoBaBZHQJ6ySXOW0JF1fZQoaAZoCWgPQwggelImNaVxQJSGlFKUaBVNOwFoFkdAnrQOk56t1nV9lChoBmgJaA9DCHRC6KBLzXFAlIaUUpRoFU1ZAWgWR0Cetj003wTedX2UKGgGaAloD0MIf6SIDKuccUCUhpRSlGgVTSUBaBZHQJ64D3ueBhB1fZQoaAZoCWgPQwiqmiDqfsZwQJSGlFKUaBVNLgFoFkdAnrsoKIBRynV9lChoBmgJaA9DCGpMiLkktXFAlIaUUpRoFU0iAWgWR0CevNxL0z0pdX2UKGgGaAloD0MI7bYLzXV2cECUhpRSlGgVTQUBaBZHQJ6+Uv24/eN1fZQoaAZoCWgPQwgHX5hMlRlxQJSGlFKUaBVNFAFoFkdAnsEhYeT3ZnV9lChoBmgJaA9DCNwODYuR/3BAlIaUUpRoFU1GAWgWR0Cew0Mt9QXRdX2UKGgGaAloD0MI7zzxnC0dcUCUhpRSlGgVTRoBaBZHQJ7E2dz4k/t1fZQoaAZoCWgPQwjjUwCM5ztrQJSGlFKUaBVNjgFoFkdAnsjDwx33YnV9lChoBmgJaA9DCJ+sGK4OlnJAlIaUUpRoFU0sAWgWR0CeyorPt2LYdX2UKGgGaAloD0MIRyHJrJ70cUCUhpRSlGgVTUkBaBZHQJ7Mes1baAZ1fZQoaAZoCWgPQwjFOlW+Z5VxQJSGlFKUaBVNLgFoFkdAns51beMyanV9lChoBmgJaA9DCDULtDskp2tAlIaUUpRoFU0kAWgWR0Ce0XbCrLhadX2UKGgGaAloD0MI6dfWT39CZECUhpRSlGgVTfsBaBZHQJ7U2/SH/Ll1fZQoaAZoCWgPQwjSU+QQcZRyQJSGlFKUaBVNJgFoFkdAntaASSNfgXV9lChoBmgJaA9DCIFc4siDhG5AlIaUUpRoFU0LAWgWR0Ce2TvSMLncdX2UKGgGaAloD0MI08H6P4dDTUCUhpRSlGgVS8toFkdAntpPpD/lyXV9lChoBmgJaA9DCMTqjzCMdXBAlIaUUpRoFU1DAWgWR0Ce3EuxbB42dX2UKGgGaAloD0MI7N0f79XRcECUhpRSlGgVTQQBaBZHQJ7fKpYLb6B1fZQoaAZoCWgPQwjD19e61OpAQJSGlFKUaBVL2mgWR0Ce4Fv0yxiYdX2UKGgGaAloD0MIIhecwV/fckCUhpRSlGgVTbIBaBZHQJ7i34Ju2ql1fZQoaAZoCWgPQwjl795RY5ZtQJSGlFKUaBVNEwFoFkdAnuRlaB7NS3V9lChoBmgJaA9DCEpE+BdBOW9AlIaUUpRoFU0dAWgWR0Ce5y2OhkAhdX2UKGgGaAloD0MICDvFqoHucUCUhpRSlGgVTSIBaBZHQJ7oxqh11W91fZQoaAZoCWgPQwjEmPT3kiZzQJSGlFKUaBVNIQFoFkdAnupf1Hvtt3V9lChoBmgJaA9DCA5rKovCFnFAlIaUUpRoFU0zAWgWR0Ce7VJhvze5dX2UKGgGaAloD0MIxsGlY87nSUCUhpRSlGgVS8hoFkdAnu5jxkNF0HV9lChoBmgJaA9DCGq932jHjW9AlIaUUpRoFU0dAWgWR0Ce8A6cAimmdX2UKGgGaAloD0MILnWQ18OucUCUhpRSlGgVTQQBaBZHQJ7xet8uzyB1fZQoaAZoCWgPQwjZCpqW2FNvQJSGlFKUaBVNDwFoFkdAnvQrSmZVn3V9lChoBmgJaA9DCHxD4bP1lnFAlIaUUpRoFU0HAWgWR0Ce9a+fywwCdX2UKGgGaAloD0MIe/oI/KG3cUCUhpRSlGgVS/xoFkdAnvciWJJoTXV9lChoBmgJaA9DCF2HakqymnFAlIaUUpRoFU0dAWgWR0Ce+MT7EYO2dX2UKGgGaAloD0MIrAK1GLzXbkCUhpRSlGgVTR4BaBZHQJ77mQKa5PN1fZQoaAZoCWgPQwi7fVaZ6UtxQJSGlFKUaBVNHwFoFkdAnv0tj9XLeXV9lChoBmgJaA9DCBu4A3XK1XBAlIaUUpRoFUv0aBZHQJ7+ijIq9Xd1fZQoaAZoCWgPQwi4kbJFUgRqQJSGlFKUaBVNZQFoFkdAnwDZAQg9vHV9lChoBmgJaA9DCEJ8YMd/FW9AlIaUUpRoFU0WAWgWR0CfA70pmVZ+dX2UKGgGaAloD0MIwtmtZTLMcUCUhpRSlGgVTSABaBZHQJ8FbkBCD291fZQoaAZoCWgPQwhkr3d/fEZxQJSGlFKUaBVNagFoFkdAnwd1o11nunV9lChoBmgJaA9DCCJUqdkDP0dAlIaUUpRoFUvLaBZHQJ8JwlRgqmV1fZQoaAZoCWgPQwj27LlMDU9wQJSGlFKUaBVNGQFoFkdAnwtlaB7NS3V9lChoBmgJaA9DCNmVlpH62m9AlIaUUpRoFU0ZAWgWR0CfDQAwPAfudX2UKGgGaAloD0MIgGWlSSnQKUCUhpRSlGgVS/poFkdAnw5t0A93bHV9lChoBmgJaA9DCNxoAG+B5W1AlIaUUpRoFU0KAWgWR0CfETNrTH81dX2UKGgGaAloD0MIWfrQBfW5cUCUhpRSlGgVTZIBaBZHQJ8T6hew9q11fZQoaAZoCWgPQwgFGJY/X1JvQJSGlFKUaBVNPAFoFkdAnxXCSmqHXXV9lChoBmgJaA9DCHLEWnwK8lNAlIaUUpRoFUvbaBZHQJ8YcFjd56d1fZQoaAZoCWgPQwg2I4PcRfRuQJSGlFKUaBVNNwFoFkdAnxpDJZGKAXV9lChoBmgJaA9DCI6vPbNks3FAlIaUUpRoFU0iAWgWR0CfG/xOLzf8dX2UKGgGaAloD0MIuYrFbwoxbUCUhpRSlGgVTSIBaBZHQJ8dw0uUUwl1fZQoaAZoCWgPQwgxlX7CmWNwQJSGlFKUaBVNCgFoFkdAnyCUzsQd0nV9lChoBmgJaA9DCCmuKvtuDXBAlIaUUpRoFU0xAWgWR0CfImEJ0GNadX2UKGgGaAloD0MIL6NYbmnCa0CUhpRSlGgVTXsBaBZHQJ8k4sH0K7Z1fZQoaAZoCWgPQwhDyeTUjh5yQJSGlFKUaBVNHQFoFkdAnye0VvddmnV9lChoBmgJaA9DCBOdZRbhDHJAlIaUUpRoFU1nAWgWR0CfKfgs9SuRdX2UKGgGaAloD0MIpmJjXsdHcECUhpRSlGgVTRABaBZHQJ8rfBxgiNd1fZQoaAZoCWgPQwguBDkoIWtwQJSGlFKUaBVNNgFoFkdAny6ZU1hsqXV9lChoBmgJaA9DCKQYINHEwnBAlIaUUpRoFU0qAWgWR0CfMG4iosI3dX2UKGgGaAloD0MIVBuciL53cUCUhpRSlGgVTTABaBZHQJ8yLH80k4Z1fZQoaAZoCWgPQwjd09UdC+dvQJSGlFKUaBVNNgFoFkdAnzP1R51Ng3V9lChoBmgJaA9DCI4B2etdP3JAlIaUUpRoFU1jAWgWR0CfNybA1vVFdX2UKGgGaAloD0MIdelfkkrAcECUhpRSlGgVTREBaBZHQJ84v3h4t6J1fZQoaAZoCWgPQwg6I0p7A6puQJSGlFKUaBVNLQFoFkdAnzpqQq7ROXV9lChoBmgJaA9DCAr3yrwViXFAlIaUUpRoFU07AWgWR0CfPVnCO3lTdX2UKGgGaAloD0MIui784HzaRkCUhpRSlGgVS9poFkdAnz5/egte2XV9lChoBmgJaA9DCKkWEcUkPnBAlIaUUpRoFU0FAWgWR0CfQBpwCKaYdX2UKGgGaAloD0MIt7WF5+WecUCUhpRSlGgVTTABaBZHQJ9B3mITGo91fZQoaAZoCWgPQwjHvfkNE6dxQJSGlFKUaBVNBgFoFkdAn0SOMqBmPHV9lChoBmgJaA9DCEkUWtZ9Vm1AlIaUUpRoFU09AWgWR0CfRqH7P6bfdX2UKGgGaAloD0MIUfUrnU9rckCUhpRSlGgVTRoBaBZHQJ9IWXqqwQl1fZQoaAZoCWgPQwjYLJeNDvlxQJSGlFKUaBVNGQFoFkdAn0tHHR1HOXV9lChoBmgJaA9DCCkg7X9AeHJAlIaUUpRoFU0iAWgWR0CfTQl8gIQfdX2UKGgGaAloD0MIYcWp1gIkcECUhpRSlGgVTSQBaBZHQJ9OytuDSPV1fZQoaAZoCWgPQwjnOSLfpVNwQJSGlFKUaBVNFwFoFkdAn1BmO2iL23V9lChoBmgJaA9DCFpj0AlhhnFAlIaUUpRoFU0fAWgWR0CfU1NwR5C4dX2UKGgGaAloD0MIZDxKJbyEcUCUhpRSlGgVTQ4BaBZHQJ9U32M85jp1fZQoaAZoCWgPQwjajqm78nxwQJSGlFKUaBVNQQFoFkdAn1bktNBWxXV9lChoBmgJaA9DCPfMkgB1NnFAlIaUUpRoFU0lAWgWR0CfWdaCtihGdX2UKGgGaAloD0MI0lJ5O4JRckCUhpRSlGgVTSABaBZHQJ9bj8YQ8Ol1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 3908,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e0a43f9143edab700df731e8e75151b4edb4a0cde7f28dde3c3f47f773f215d
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4eedc814644320f0d775ebf6ac7df68464694b257fb0e5defc11c3da0cb56bd
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (236 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.86240197051154, "std_reward": 20.76367924748218, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-17T15:18:23.246334"}