messham commited on
Commit
c492038
·
1 Parent(s): 3a47942

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1556.32 +/- 93.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0f04770f54133779fc414fb2317f10f741e9d9c3273f9963f2fa1cc3ef35e60
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f505f171b80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f505f171c10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f505f171ca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f505f171d30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f505f171dc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f505f171e50>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f505f171ee0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f505f171f70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f505f175040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f505f1750d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f505f175160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f505f1751f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f505f173d00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1681026251991223470,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOHJdL8XEk4/yYqYPSkNtT48D34+nhq+vmLTkD3bulI/+2+BP5QemL7B+N2+t7g/P4UpkL9xibo+sJcOPNfuyr0QzRI/Y3Rwv0b6UD6/wwFApdNWvwQQj7+Zb0y/4CEMvjHQej+W5e8+nru7PrYIRj9+cdM+ljqCv5r95z5uvjq9hLHOPkgIA76Lrws9vP3Kvh2fgz9D8IK8qQZQP00iTDsWKm6+3N8APxED3b1Hq8k+doTJO0KoJL8klsY9nwNMP49DtT9wFWy/rJOvP+m9wT4x0Ho/luXvPp67uz62CEY/m45Ovmcqaj67zwY/Y2STP2d8aj9Vx0XAxb1HPwjsn77vNRs/WgHbP0WzED9aPDxAWA/svjEOZr8OQce+gJBNPjgCqT8JopC+CQk1P5ZCWL0DCSY/AiTqPvktGr+iZM+/oqWCv5CXCMCeu7s+bXelvxvM4z6byj2/oQUWPy5ZEj9A36I/3utdPTOClb7DlEy/DZIDPhycTD+g23W/zWOBP4l/8D/auQW/ST9xP7CUgzwEskU+AFwdQGdM/T7m/ta/sZNrvbCwqj3a9ABAm3a3vqKlgr+W5e8+vosuwLYIRj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB+nBo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATxwKvgAAAAByWO2/AAAAAHBKUL0AAAAA/cPrPwAAAABK8eq9AAAAAFAo7D8AAAAAzyUKvgAAAACP8t2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvaGnNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGQGlL0AAAAAuurgvwAAAAACE808AAAAAK35/j8AAAAAdHJSvAAAAACDTgBAAAAAANHWCr4AAAAANsD8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOP0CTcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBWy1+9AAAAAFW64r8AAAAAiNMBPgAAAAAVZ/w/AAAAANHvDz4AAAAAb0IAQAAAAAB2zwq9AAAAAOJa3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXlKu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAft3kPQAAAADDPwDAAAAAAK2fCT4AAAAAaJ3qPwAAAACr1Nq9AAAAAPH2/D8AAAAA93AKPgAAAAAqywDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJm2oDGLk0eMAWyUTegDjAF0lEdAqvJnyZrpJXV9lChoBkdAnM4XAM2FWWgHTegDaAhHQKr6mixmkFh1fZQoaAZHQJm5SzIFNcpoB03oA2gIR0Cq+wfdZaFFdX2UKGgGR0CZFF7W/ag3aAdN6ANoCEdAqvv03n6l+HV9lChoBkdAmyDLVJ+UhWgHTegDaAhHQKr/heWv8qF1fZQoaAZHQJUUHBoEjgRoB03oA2gIR0CrCtBmXgLrdX2UKGgGR0CZEIJSiudPaAdN6ANoCEdAqws7e0ojOnV9lChoBkdAmULUSZjQRmgHTegDaAhHQKsMKBshxHZ1fZQoaAZHQJSDiRmseXBoB03oA2gIR0CrD0KW9lErdX2UKGgGR0CUGwpfx+a0aAdN6ANoCEdAqxeFTefqYHV9lChoBkdAmfvC00FbFGgHTegDaAhHQKsX6rPMSsd1fZQoaAZHQJfcRK8L8aZoB03oA2gIR0CrGNhqCYkWdX2UKGgGR0CZWM3+dbxFaAdN6ANoCEdAqxvmb/ffoHV9lChoBkdAnA1HC4z7/GgHTegDaAhHQKsng7bL2Yh1fZQoaAZHQJtr1WyTpxFoB03oA2gIR0CrJ+ok7fYSdX2UKGgGR0CUNT6Ww/xEaAdN6ANoCEdAqyjXjn3cpXV9lChoBkdAmDg9ix3V1GgHTegDaAhHQKssBiyY5T91fZQoaAZHQIF8BJCjUNNoB01DAWgIR0CrLQ3rleWwdX2UKGgGR0CYnzl3hXKbaAdN6ANoCEdAqzRJ0bLlm3V9lChoBkdAlN6buQZGa2gHTegDaAhHQKs0sFYdQwd1fZQoaAZHQJtvXfJmukloB03oA2gIR0CrOMUtqYZ3dX2UKGgGR0CYsC22Xsw+aAdN6ANoCEdAqznNbHIZInV9lChoBkdAmus1/2Cd0GgHTegDaAhHQKtEFF3pwCN1fZQoaAZHQJfG1dNWU8poB03oA2gIR0CrRLbPhQ3xdX2UKGgGR0CXmAvboKUnaAdN6ANoCEdAq0kJlvqC6HV9lChoBkdAnYvJJsfq5mgHTegDaAhHQKtKCeeWfK91fZQoaAZHQJi+odJaq0doB03oA2gIR0CrUUOSOinHdX2UKGgGR0CY2+kt29teaAdN6ANoCEdAq1Gp+2E0znV9lChoBkdAl15l3IMjNmgHTegDaAhHQKtV5hegL7Z1fZQoaAZHQJrxcgV45cVoB03oA2gIR0CrVuMgMc6vdX2UKGgGR0CTv4DSw4bTaAdN6ANoCEdAq2A9iDujRHV9lChoBkdAmdOQa72+PGgHTegDaAhHQKtg4qgAZKp1fZQoaAZHQJYSr4ubqhVoB03oA2gIR0CrZfpqh11XdX2UKGgGR0CXHkDPWxyGaAdN6ANoCEdAq2cEqBmPHXV9lChoBkdAmS1GQr+YMWgHTegDaAhHQKtuUiQkond1fZQoaAZHQJdVWSgXdj5oB03oA2gIR0CrbrstTUAldX2UKGgGR0CXIiQyAQQMaAdN6ANoCEdAq3LI6CDmKnV9lChoBkdAlUfXcclw+GgHTegDaAhHQKtz0UB4lhR1fZQoaAZHQJhs9u2qkuZoB03oA2gIR0CrfHEsz2vjdX2UKGgGR0CZQGucc2itaAdN6ANoCEdAq30Q6Kcd53V9lChoBkdAmbsP4Irvs2gHTegDaAhHQKuC+Ezwc5t1fZQoaAZHQJiFfBSDRMNoB03oA2gIR0Crg/RZEDyOdX2UKGgGR0CXPg+irT6SaAdN6ANoCEdAq4sr3oLXtnV9lChoBkdAnCR2dZq20GgHTegDaAhHQKuLlQ6ZH/d1fZQoaAZHQJc5KsvIwM9oB03oA2gIR0Crj6qpkwvhdX2UKGgGR0CVs8qZtvXLaAdN6ANoCEdAq5Cw+W4Vh3V9lChoBkdAklNKews5GWgHTegDaAhHQKuYdzK9wm51fZQoaAZHQJgFFCkXUH9oB03oA2gIR0CrmQ+w9q1xdX2UKGgGR0CZR71WsA/+aAdN6ANoCEdAq58REMLF43V9lChoBkdAlgYJWmxdIGgHTegDaAhHQKugmn2Iwdt1fZQoaAZHQJTH9KNAC4loB03oA2gIR0Crp/tmthd/dX2UKGgGR0CVfFwXqJMyaAdN6ANoCEdAq6hm5Yoy9HV9lChoBkdAlYHA5eZ5RmgHTegDaAhHQKusc1jy4F11fZQoaAZHQJdZtTIeYD1oB03oA2gIR0CrrXOGCZnddX2UKGgGR0CXjgBBiTdMaAdN6ANoCEdAq7TFJBgNPXV9lChoBkdAln37S/j81mgHTegDaAhHQKu1bgqEvkB1fZQoaAZHQJfrQfYBeX1oB03oA2gIR0Cru+3Td+G5dX2UKGgGR0CXpYZzxPO6aAdN6ANoCEdAq72TWI42j3V9lChoBkdAmHIqEnLJS2gHTegDaAhHQKvGAdAgPmR1fZQoaAZHQJnt9ZLZi/hoB03oA2gIR0Crxmj/MnqndX2UKGgGR0CTOum78Nx3aAdN6ANoCEdAq8qIG4ZuRHV9lChoBkdAluxGseXAumgHTegDaAhHQKvLkO/+Kj11fZQoaAZHQJrLxuKoAGVoB03oA2gIR0Cr0uEvTPSldX2UKGgGR0CWRC5gPVd5aAdN6ANoCEdAq9NJeAuqWHV9lChoBkdAmHXe54GD+WgHTegDaAhHQKvZA5/9YOl1fZQoaAZHQJWkJGBnSORoB03oA2gIR0Cr2pYqG1x9dX2UKGgGR0CVzfSk0rLAaAdN6ANoCEdAq+PiOo5xR3V9lChoBkdAknKVyJbdJ2gHTegDaAhHQKvkTT6SDAd1fZQoaAZHQJh1fCHh0hhoB03oA2gIR0Cr6KRcmjTKdX2UKGgGR0CVx5lw97ngaAdN6ANoCEdAq+m53eN1hnV9lChoBkdAlZ8mW2PT5WgHTegDaAhHQKvxfRm9QGh1fZQoaAZHQJiBx9a2WptoB03oA2gIR0Cr8fCGWUr1dX2UKGgGR0CWv3oBq9GraAdN6ANoCEdAq/e+U4aP0nV9lChoBkdAlwlvnW8RMGgHTegDaAhHQKv5aU7CBPN1fZQoaAZHQJdknR+jM3ZoB03oA2gIR0CsAvFGgBcSdX2UKGgGR0CYuM6dDpkgaAdN6ANoCEdArANla6jFh3V9lChoBkdAlp7IXKr7wmgHTegDaAhHQKwHspgkTpR1fZQoaAZHQJd2sBLf1pVoB03oA2gIR0CsCMKl54W2dX2UKGgGR0CWYWJQLux9aAdN6ANoCEdArBCAiX6ZY3V9lChoBkdAlsH9Ni6QNmgHTegDaAhHQKwQ5RCx/ut1fZQoaAZHQJjMUDp1RtRoB03oA2gIR0CsFfCEYfnwdX2UKGgGR0CaFoRMewLWaAdN6ANoCEdArBdgOBlMAXV9lChoBkdAl7UMW9DhL2gHTegDaAhHQKwgxFxXGOx1fZQoaAZHQJezv3xnWatoB03oA2gIR0CsISkgwGnodX2UKGgGR0CaqAeQuEmIaAdN6ANoCEdArCUvfTCtR3V9lChoBkdAmcccXizcAWgHTegDaAhHQKwmK5kK/mF1fZQoaAZHQJk3S6iCaqloB03oA2gIR0CsLXJS75EddX2UKGgGR0CWsRhgE2YOaAdN6ANoCEdArC3Xd/J/5XV9lChoBkdAmYhsF+uvEGgHTegDaAhHQKwyKAuqWC51fZQoaAZHQJZs7v4M4LloB03oA2gIR0CsM4dLxqfwdX2UKGgGR0CV11lXA/LUaAdN6ANoCEdArD2V7a7EpHV9lChoBkdAm2Xv8qFyrGgHTegDaAhHQKw9+3fAKv51fZQoaAZHQJhuUGC7K7toB03oA2gIR0CsQf3I+4b0dX2UKGgGR0CYf2XoTwlTaAdN6ANoCEdArEL9p0wJxHV9lChoBkdAmNnneBQN1GgHTegDaAhHQKxKLYQrc0t1fZQoaAZHQJsHDFsHjZNoB03oA2gIR0CsSpHBUJfIdX2UKGgGR0CZ6ZirDIikaAdN6ANoCEdArE58a86FNHV9lChoBkdAk8MY/FBIF2gHTegDaAhHQKxPgy+HrQh1fZQoaAZHQJWgu2qkuYhoB03oA2gIR0CsWi77j1f3dX2UKGgGR0CYq/078vVWaAdN6ANoCEdArFqwZl4C63VlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fb9b834983161086ea777fcb39a00c465b83e113bc63a0e6c34f16f6b9c9dcf
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca991eaac7ab1b6c84215ff8828d78d990a9ba6547fa82aaab77c1f5e7ad51dd
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f505f171b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f505f171c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f505f171ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f505f171d30>", "_build": "<function ActorCriticPolicy._build at 0x7f505f171dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f505f171e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f505f171ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f505f171f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f505f175040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f505f1750d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f505f175160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f505f1751f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f505f173d00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681026251991223470, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOHJdL8XEk4/yYqYPSkNtT48D34+nhq+vmLTkD3bulI/+2+BP5QemL7B+N2+t7g/P4UpkL9xibo+sJcOPNfuyr0QzRI/Y3Rwv0b6UD6/wwFApdNWvwQQj7+Zb0y/4CEMvjHQej+W5e8+nru7PrYIRj9+cdM+ljqCv5r95z5uvjq9hLHOPkgIA76Lrws9vP3Kvh2fgz9D8IK8qQZQP00iTDsWKm6+3N8APxED3b1Hq8k+doTJO0KoJL8klsY9nwNMP49DtT9wFWy/rJOvP+m9wT4x0Ho/luXvPp67uz62CEY/m45Ovmcqaj67zwY/Y2STP2d8aj9Vx0XAxb1HPwjsn77vNRs/WgHbP0WzED9aPDxAWA/svjEOZr8OQce+gJBNPjgCqT8JopC+CQk1P5ZCWL0DCSY/AiTqPvktGr+iZM+/oqWCv5CXCMCeu7s+bXelvxvM4z6byj2/oQUWPy5ZEj9A36I/3utdPTOClb7DlEy/DZIDPhycTD+g23W/zWOBP4l/8D/auQW/ST9xP7CUgzwEskU+AFwdQGdM/T7m/ta/sZNrvbCwqj3a9ABAm3a3vqKlgr+W5e8+vosuwLYIRj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB+nBo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATxwKvgAAAAByWO2/AAAAAHBKUL0AAAAA/cPrPwAAAABK8eq9AAAAAFAo7D8AAAAAzyUKvgAAAACP8t2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvaGnNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGQGlL0AAAAAuurgvwAAAAACE808AAAAAK35/j8AAAAAdHJSvAAAAACDTgBAAAAAANHWCr4AAAAANsD8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOP0CTcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBWy1+9AAAAAFW64r8AAAAAiNMBPgAAAAAVZ/w/AAAAANHvDz4AAAAAb0IAQAAAAAB2zwq9AAAAAOJa3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXlKu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAft3kPQAAAADDPwDAAAAAAK2fCT4AAAAAaJ3qPwAAAACr1Nq9AAAAAPH2/D8AAAAA93AKPgAAAAAqywDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJm2oDGLk0eMAWyUTegDjAF0lEdAqvJnyZrpJXV9lChoBkdAnM4XAM2FWWgHTegDaAhHQKr6mixmkFh1fZQoaAZHQJm5SzIFNcpoB03oA2gIR0Cq+wfdZaFFdX2UKGgGR0CZFF7W/ag3aAdN6ANoCEdAqvv03n6l+HV9lChoBkdAmyDLVJ+UhWgHTegDaAhHQKr/heWv8qF1fZQoaAZHQJUUHBoEjgRoB03oA2gIR0CrCtBmXgLrdX2UKGgGR0CZEIJSiudPaAdN6ANoCEdAqws7e0ojOnV9lChoBkdAmULUSZjQRmgHTegDaAhHQKsMKBshxHZ1fZQoaAZHQJSDiRmseXBoB03oA2gIR0CrD0KW9lErdX2UKGgGR0CUGwpfx+a0aAdN6ANoCEdAqxeFTefqYHV9lChoBkdAmfvC00FbFGgHTegDaAhHQKsX6rPMSsd1fZQoaAZHQJfcRK8L8aZoB03oA2gIR0CrGNhqCYkWdX2UKGgGR0CZWM3+dbxFaAdN6ANoCEdAqxvmb/ffoHV9lChoBkdAnA1HC4z7/GgHTegDaAhHQKsng7bL2Yh1fZQoaAZHQJtr1WyTpxFoB03oA2gIR0CrJ+ok7fYSdX2UKGgGR0CUNT6Ww/xEaAdN6ANoCEdAqyjXjn3cpXV9lChoBkdAmDg9ix3V1GgHTegDaAhHQKssBiyY5T91fZQoaAZHQIF8BJCjUNNoB01DAWgIR0CrLQ3rleWwdX2UKGgGR0CYnzl3hXKbaAdN6ANoCEdAqzRJ0bLlm3V9lChoBkdAlN6buQZGa2gHTegDaAhHQKs0sFYdQwd1fZQoaAZHQJtvXfJmukloB03oA2gIR0CrOMUtqYZ3dX2UKGgGR0CYsC22Xsw+aAdN6ANoCEdAqznNbHIZInV9lChoBkdAmus1/2Cd0GgHTegDaAhHQKtEFF3pwCN1fZQoaAZHQJfG1dNWU8poB03oA2gIR0CrRLbPhQ3xdX2UKGgGR0CXmAvboKUnaAdN6ANoCEdAq0kJlvqC6HV9lChoBkdAnYvJJsfq5mgHTegDaAhHQKtKCeeWfK91fZQoaAZHQJi+odJaq0doB03oA2gIR0CrUUOSOinHdX2UKGgGR0CY2+kt29teaAdN6ANoCEdAq1Gp+2E0znV9lChoBkdAl15l3IMjNmgHTegDaAhHQKtV5hegL7Z1fZQoaAZHQJrxcgV45cVoB03oA2gIR0CrVuMgMc6vdX2UKGgGR0CTv4DSw4bTaAdN6ANoCEdAq2A9iDujRHV9lChoBkdAmdOQa72+PGgHTegDaAhHQKtg4qgAZKp1fZQoaAZHQJYSr4ubqhVoB03oA2gIR0CrZfpqh11XdX2UKGgGR0CXHkDPWxyGaAdN6ANoCEdAq2cEqBmPHXV9lChoBkdAmS1GQr+YMWgHTegDaAhHQKtuUiQkond1fZQoaAZHQJdVWSgXdj5oB03oA2gIR0CrbrstTUAldX2UKGgGR0CXIiQyAQQMaAdN6ANoCEdAq3LI6CDmKnV9lChoBkdAlUfXcclw+GgHTegDaAhHQKtz0UB4lhR1fZQoaAZHQJhs9u2qkuZoB03oA2gIR0CrfHEsz2vjdX2UKGgGR0CZQGucc2itaAdN6ANoCEdAq30Q6Kcd53V9lChoBkdAmbsP4Irvs2gHTegDaAhHQKuC+Ezwc5t1fZQoaAZHQJiFfBSDRMNoB03oA2gIR0Crg/RZEDyOdX2UKGgGR0CXPg+irT6SaAdN6ANoCEdAq4sr3oLXtnV9lChoBkdAnCR2dZq20GgHTegDaAhHQKuLlQ6ZH/d1fZQoaAZHQJc5KsvIwM9oB03oA2gIR0Crj6qpkwvhdX2UKGgGR0CVs8qZtvXLaAdN6ANoCEdAq5Cw+W4Vh3V9lChoBkdAklNKews5GWgHTegDaAhHQKuYdzK9wm51fZQoaAZHQJgFFCkXUH9oB03oA2gIR0CrmQ+w9q1xdX2UKGgGR0CZR71WsA/+aAdN6ANoCEdAq58REMLF43V9lChoBkdAlgYJWmxdIGgHTegDaAhHQKugmn2Iwdt1fZQoaAZHQJTH9KNAC4loB03oA2gIR0Crp/tmthd/dX2UKGgGR0CVfFwXqJMyaAdN6ANoCEdAq6hm5Yoy9HV9lChoBkdAlYHA5eZ5RmgHTegDaAhHQKusc1jy4F11fZQoaAZHQJdZtTIeYD1oB03oA2gIR0CrrXOGCZnddX2UKGgGR0CXjgBBiTdMaAdN6ANoCEdAq7TFJBgNPXV9lChoBkdAln37S/j81mgHTegDaAhHQKu1bgqEvkB1fZQoaAZHQJfrQfYBeX1oB03oA2gIR0Cru+3Td+G5dX2UKGgGR0CXpYZzxPO6aAdN6ANoCEdAq72TWI42j3V9lChoBkdAmHIqEnLJS2gHTegDaAhHQKvGAdAgPmR1fZQoaAZHQJnt9ZLZi/hoB03oA2gIR0Crxmj/MnqndX2UKGgGR0CTOum78Nx3aAdN6ANoCEdAq8qIG4ZuRHV9lChoBkdAluxGseXAumgHTegDaAhHQKvLkO/+Kj11fZQoaAZHQJrLxuKoAGVoB03oA2gIR0Cr0uEvTPSldX2UKGgGR0CWRC5gPVd5aAdN6ANoCEdAq9NJeAuqWHV9lChoBkdAmHXe54GD+WgHTegDaAhHQKvZA5/9YOl1fZQoaAZHQJWkJGBnSORoB03oA2gIR0Cr2pYqG1x9dX2UKGgGR0CVzfSk0rLAaAdN6ANoCEdAq+PiOo5xR3V9lChoBkdAknKVyJbdJ2gHTegDaAhHQKvkTT6SDAd1fZQoaAZHQJh1fCHh0hhoB03oA2gIR0Cr6KRcmjTKdX2UKGgGR0CVx5lw97ngaAdN6ANoCEdAq+m53eN1hnV9lChoBkdAlZ8mW2PT5WgHTegDaAhHQKvxfRm9QGh1fZQoaAZHQJiBx9a2WptoB03oA2gIR0Cr8fCGWUr1dX2UKGgGR0CWv3oBq9GraAdN6ANoCEdAq/e+U4aP0nV9lChoBkdAlwlvnW8RMGgHTegDaAhHQKv5aU7CBPN1fZQoaAZHQJdknR+jM3ZoB03oA2gIR0CsAvFGgBcSdX2UKGgGR0CYuM6dDpkgaAdN6ANoCEdArANla6jFh3V9lChoBkdAlp7IXKr7wmgHTegDaAhHQKwHspgkTpR1fZQoaAZHQJd2sBLf1pVoB03oA2gIR0CsCMKl54W2dX2UKGgGR0CWYWJQLux9aAdN6ANoCEdArBCAiX6ZY3V9lChoBkdAlsH9Ni6QNmgHTegDaAhHQKwQ5RCx/ut1fZQoaAZHQJjMUDp1RtRoB03oA2gIR0CsFfCEYfnwdX2UKGgGR0CaFoRMewLWaAdN6ANoCEdArBdgOBlMAXV9lChoBkdAl7UMW9DhL2gHTegDaAhHQKwgxFxXGOx1fZQoaAZHQJezv3xnWatoB03oA2gIR0CsISkgwGnodX2UKGgGR0CaqAeQuEmIaAdN6ANoCEdArCUvfTCtR3V9lChoBkdAmcccXizcAWgHTegDaAhHQKwmK5kK/mF1fZQoaAZHQJk3S6iCaqloB03oA2gIR0CsLXJS75EddX2UKGgGR0CWsRhgE2YOaAdN6ANoCEdArC3Xd/J/5XV9lChoBkdAmYhsF+uvEGgHTegDaAhHQKwyKAuqWC51fZQoaAZHQJZs7v4M4LloB03oA2gIR0CsM4dLxqfwdX2UKGgGR0CV11lXA/LUaAdN6ANoCEdArD2V7a7EpHV9lChoBkdAm2Xv8qFyrGgHTegDaAhHQKw9+3fAKv51fZQoaAZHQJhuUGC7K7toB03oA2gIR0CsQf3I+4b0dX2UKGgGR0CYf2XoTwlTaAdN6ANoCEdArEL9p0wJxHV9lChoBkdAmNnneBQN1GgHTegDaAhHQKxKLYQrc0t1fZQoaAZHQJsHDFsHjZNoB03oA2gIR0CsSpHBUJfIdX2UKGgGR0CZ6ZirDIikaAdN6ANoCEdArE58a86FNHV9lChoBkdAk8MY/FBIF2gHTegDaAhHQKxPgy+HrQh1fZQoaAZHQJWgu2qkuYhoB03oA2gIR0CsWi77j1f3dX2UKGgGR0CYq/078vVWaAdN6ANoCEdArFqwZl4C63VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54d5c660c135f6e21ef8b9581a74624231c73dfc5cfbe8bfaafd19e6fddddc6f
3
+ size 1044935
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1556.3248754536967, "std_reward": 93.76639522441775, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T08:44:20.657299"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:deb5451221b2da8d01ac971c7d3bad2b8314c6f008f45be19dc102a0d39b9200
3
+ size 2170