messham commited on
Commit
3da2d90
·
1 Parent(s): 408e3a5

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.35 +/- 0.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aff935e6e8fd0ad1fdb0158e68659faa272846fb31c7074167849bd347d71f7
3
+ size 108058
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f505f175310>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f505f173ec0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1681029908422426507,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADFHKPnMXBb1OSxc/DFHKPnMXBb1OSxc/DFHKPnMXBb1OSxc/DFHKPnMXBb1OSxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPR4lvpYxhD53YbM/65hLv6xCob91pJo/YAxnPwyADz8Iycu+K2j2Pr4kjr/E5ri/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAMUco+cxcFvU5LFz9QcJc8VNmgu12mUzwMUco+cxcFvU5LFz9QcJc8VNmgu12mUzwMUco+cxcFvU5LFz9QcJc8VNmgu12mUzwMUco+cxcFvU5LFz9QcJc8VNmgu12mUzyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.3951496 -0.03249307 0.5909928 ]\n [ 0.3951496 -0.03249307 0.5909928 ]\n [ 0.3951496 -0.03249307 0.5909928 ]\n [ 0.3951496 -0.03249307 0.5909928 ]]",
38
+ "desired_goal": "[[-0.16124816 0.2581908 1.4014119 ]\n [-0.7953021 -1.2598472 1.2081438 ]\n [ 0.9025326 0.5605476 -0.39801812]\n [ 0.4812635 -1.1104963 -1.4445424 ]]",
39
+ "observation": "[[ 0.3951496 -0.03249307 0.5909928 0.01848617 -0.00490872 0.01291808]\n [ 0.3951496 -0.03249307 0.5909928 0.01848617 -0.00490872 0.01291808]\n [ 0.3951496 -0.03249307 0.5909928 0.01848617 -0.00490872 0.01291808]\n [ 0.3951496 -0.03249307 0.5909928 0.01848617 -0.00490872 0.01291808]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuYSAvWTYFT4rcZE+e3m2vV1N6T0rbik+pAQSPrMxDL4ZS0M+/gOkPe4s0z3wiVk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.06275315 0.14633328 0.28406653]\n [-0.08909889 0.11391709 0.16545932]\n [ 0.14259583 -0.13690834 0.19071616]\n [ 0.08008574 0.10311304 0.05311006]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwf9WsmPjBMCUhpRSlIwBbJRLMowBdJRHQKeNEGMXJo11fZQoaAZoCWgPQwjWxAJf0a3/v5SGlFKUaBVLMmgWR0CnjNDWkJrtdX2UKGgGaAloD0MInwQ25+A5B8CUhpRSlGgVSzJoFkdAp4yTV2A5JnV9lChoBmgJaA9DCPmE7LyNjf+/lIaUUpRoFUsyaBZHQKeMUxrzoU11fZQoaAZoCWgPQwiIga59AV0CwJSGlFKUaBVLMmgWR0Cnjfyde6ZqdX2UKGgGaAloD0MIpwhwehcv/L+UhpRSlGgVSzJoFkdAp429fgJkXnV9lChoBmgJaA9DCGaIY13cJgLAlIaUUpRoFUsyaBZHQKeNgC/47BB1fZQoaAZoCWgPQwijHw2nzA37v5SGlFKUaBVLMmgWR0CnjUAqEvkBdX2UKGgGaAloD0MIgv+tZMeGCsCUhpRSlGgVSzJoFkdAp47r94u9OHV9lChoBmgJaA9DCGA6rdug9gPAlIaUUpRoFUsyaBZHQKeOrKDCgsd1fZQoaAZoCWgPQwhvDWyVYLH7v5SGlFKUaBVLMmgWR0Cnjm8BU70WdX2UKGgGaAloD0MI0Qg2rn8XC8CUhpRSlGgVSzJoFkdAp44u2JBPbnV9lChoBmgJaA9DCIem7PSD+gbAlIaUUpRoFUsyaBZHQKeP3RQ79yd1fZQoaAZoCWgPQwgwZeCAli4EwJSGlFKUaBVLMmgWR0Cnj53vH93sdX2UKGgGaAloD0MI1T4djxnoAsCUhpRSlGgVSzJoFkdAp49geA/cFnV9lChoBmgJaA9DCI2ZRL3gMw7AlIaUUpRoFUsyaBZHQKePIIAOrhl1fZQoaAZoCWgPQwjmsPuO4fH8v5SGlFKUaBVLMmgWR0CnkNnivPkadX2UKGgGaAloD0MIGZC93v3xA8CUhpRSlGgVSzJoFkdAp5CaTY/Vy3V9lChoBmgJaA9DCD+toj80c/a/lIaUUpRoFUsyaBZHQKeQXKji4rl1fZQoaAZoCWgPQwgyxofZy8YQwJSGlFKUaBVLMmgWR0CnkBxdyDIzdX2UKGgGaAloD0MICU/o9Scx/7+UhpRSlGgVSzJoFkdAp5HaYu01InV9lChoBmgJaA9DCFUX8DLDJgHAlIaUUpRoFUsyaBZHQKeRm0m+j/N1fZQoaAZoCWgPQwj43XTLDpEEwJSGlFKUaBVLMmgWR0CnkV4fW+XadX2UKGgGaAloD0MImnlyTYHMAsCUhpRSlGgVSzJoFkdAp5EeXHBDX3V9lChoBmgJaA9DCFIN+z2xjgnAlIaUUpRoFUsyaBZHQKeS4ZXMhX91fZQoaAZoCWgPQwgLtaZ5x0kEwJSGlFKUaBVLMmgWR0CnkqIqCpWFdX2UKGgGaAloD0MILEgzFk3n/7+UhpRSlGgVSzJoFkdAp5Jkh1Tzd3V9lChoBmgJaA9DCIPBNXf0Hw/AlIaUUpRoFUsyaBZHQKeSJL0z0pV1fZQoaAZoCWgPQwiC5J1DGToSwJSGlFKUaBVLMmgWR0Cnk+WqkuYhdX2UKGgGaAloD0MIUP2DSIb8AsCUhpRSlGgVSzJoFkdAp5OmQlruY3V9lChoBmgJaA9DCBNHHogsEgTAlIaUUpRoFUsyaBZHQKeTaLAHmih1fZQoaAZoCWgPQwhgWWlSCvr+v5SGlFKUaBVLMmgWR0CnkyjP4VRDdX2UKGgGaAloD0MI3gVKCizAAMCUhpRSlGgVSzJoFkdAp5TmQKa5PXV9lChoBmgJaA9DCBCzl22n7QfAlIaUUpRoFUsyaBZHQKeUpxtHhCN1fZQoaAZoCWgPQwiTjJyFPe0AwJSGlFKUaBVLMmgWR0CnlGl/hESedX2UKGgGaAloD0MIAOMZNPRPAMCUhpRSlGgVSzJoFkdAp5QpZbILgHV9lChoBmgJaA9DCIP6ljldVg3AlIaUUpRoFUsyaBZHQKeV7fuTibV1fZQoaAZoCWgPQwilFHR7SWMEwJSGlFKUaBVLMmgWR0Cnla7TlT3qdX2UKGgGaAloD0MIoYSZtn8l9r+UhpRSlGgVSzJoFkdAp5VxdGAkLXV9lChoBmgJaA9DCKta0lEO5g3AlIaUUpRoFUsyaBZHQKeVMYIBzWB1fZQoaAZoCWgPQwhF14UfnG8KwJSGlFKUaBVLMmgWR0Cnlvag2606dX2UKGgGaAloD0MIYcJoVrYPDMCUhpRSlGgVSzJoFkdAp5a3SWqtHXV9lChoBmgJaA9DCFu0AG2ruQPAlIaUUpRoFUsyaBZHQKeWef29L6F1fZQoaAZoCWgPQwjWbrvQXOcLwJSGlFKUaBVLMmgWR0CnljnnuAqedX2UKGgGaAloD0MIamrZWl/k/L+UhpRSlGgVSzJoFkdAp5gINTcZcnV9lChoBmgJaA9DCJMANbVsrQXAlIaUUpRoFUsyaBZHQKeXyPdVNpN1fZQoaAZoCWgPQwh9PsqICyABwJSGlFKUaBVLMmgWR0Cnl4tzjm0WdX2UKGgGaAloD0MIOdOE7SeDFcCUhpRSlGgVSzJoFkdAp5dLbvgFYHV9lChoBmgJaA9DCGmNQSeEzgPAlIaUUpRoFUsyaBZHQKeZF987ZFp1fZQoaAZoCWgPQwi2SUVj7e8PwJSGlFKUaBVLMmgWR0CnmNidSVGDdX2UKGgGaAloD0MIB7KeWn1VAcCUhpRSlGgVSzJoFkdAp5ia7wrlNnV9lChoBmgJaA9DCJhNgGH5kxLAlIaUUpRoFUsyaBZHQKeYWvPkaMt1fZQoaAZoCWgPQwg0EqERbHwNwJSGlFKUaBVLMmgWR0CnmhnwG4ZudX2UKGgGaAloD0MIDcfzGVCvAsCUhpRSlGgVSzJoFkdAp5napHZsbnV9lChoBmgJaA9DCIB/SpUoe/m/lIaUUpRoFUsyaBZHQKeZnR/EwWZ1fZQoaAZoCWgPQwiKVu4FZhUTwJSGlFKUaBVLMmgWR0CnmV0qx1PndX2UKGgGaAloD0MIUADFyJJZBsCUhpRSlGgVSzJoFkdAp5sg8dPtUnV9lChoBmgJaA9DCE/JObGHdgLAlIaUUpRoFUsyaBZHQKea4ZqmCRR1fZQoaAZoCWgPQwiWd9UD5oENwJSGlFKUaBVLMmgWR0CnmqQjlgc+dX2UKGgGaAloD0MIZYnOMosQBcCUhpRSlGgVSzJoFkdAp5pkNSZSenV9lChoBmgJaA9DCLddaK7TCAHAlIaUUpRoFUsyaBZHQKec1wNsnAt1fZQoaAZoCWgPQwhvoMA7+dQDwJSGlFKUaBVLMmgWR0CnnJiGFi8WdX2UKGgGaAloD0MIUdzxJr9FA8CUhpRSlGgVSzJoFkdAp5xcDwH7g3V9lChoBmgJaA9DCGJJufscXxHAlIaUUpRoFUsyaBZHQKecHS6UaAF1fZQoaAZoCWgPQwiiluZWCMsEwJSGlFKUaBVLMmgWR0CnnpgE2YOUdX2UKGgGaAloD0MIBU8hV+o5BMCUhpRSlGgVSzJoFkdAp55aNuLrHHV9lChoBmgJaA9DCI+K/zuiIgDAlIaUUpRoFUsyaBZHQKeeHcmjTKF1fZQoaAZoCWgPQwhQcodNZCYCwJSGlFKUaBVLMmgWR0Cnnd8zQ/ordX2UKGgGaAloD0MIatswCoJnBsCUhpRSlGgVSzJoFkdAp6Bf36AOKHV9lChoBmgJaA9DCIC21awzHgTAlIaUUpRoFUsyaBZHQKegISNfgJl1fZQoaAZoCWgPQwgYQWMmUW8GwJSGlFKUaBVLMmgWR0Cnn+QXyiEhdX2UKGgGaAloD0MIyNKHLqhPA8CUhpRSlGgVSzJoFkdAp5+lBD5TInV9lChoBmgJaA9DCLjNVIhHwg3AlIaUUpRoFUsyaBZHQKeiHbHp8nh1fZQoaAZoCWgPQwjmdFlMbP4GwJSGlFKUaBVLMmgWR0Cnod8XFcY7dX2UKGgGaAloD0MIOkAwR49fCcCUhpRSlGgVSzJoFkdAp6GiUcGTtHV9lChoBmgJaA9DCJet9UVCWwXAlIaUUpRoFUsyaBZHQKehY7Sy+pR1fZQoaAZoCWgPQwgj3GRUGcb8v5SGlFKUaBVLMmgWR0Cno9hKDkELdX2UKGgGaAloD0MIlbcjnBbcAMCUhpRSlGgVSzJoFkdAp6OZcNYr8XV9lChoBmgJaA9DCBDM0eP3tgnAlIaUUpRoFUsyaBZHQKejXUmUnoh1fZQoaAZoCWgPQwi6SQwCK8f7v5SGlFKUaBVLMmgWR0Cnox5U96kZdX2UKGgGaAloD0MIgA7z5QU4EMCUhpRSlGgVSzJoFkdAp6T2gL7XQXV9lChoBmgJaA9DCGkaFM0DmAHAlIaUUpRoFUsyaBZHQKektz9S/CZ1fZQoaAZoCWgPQwg1Q6ooXsUHwJSGlFKUaBVLMmgWR0CnpHnmJWNndX2UKGgGaAloD0MIKxN+qZ/3/7+UhpRSlGgVSzJoFkdAp6Q51oxpL3V9lChoBmgJaA9DCNNQo5Bklv6/lIaUUpRoFUsyaBZHQKel9o6jnFJ1fZQoaAZoCWgPQwgXm1YKgZwDwJSGlFKUaBVLMmgWR0CnpbcinpB5dX2UKGgGaAloD0MI7PgvEARI/b+UhpRSlGgVSzJoFkdAp6V5pN9H+nV9lChoBmgJaA9DCAXEJFzI4wHAlIaUUpRoFUsyaBZHQKelOZ9d/rl1fZQoaAZoCWgPQwg6QDBHjx8DwJSGlFKUaBVLMmgWR0Cnpv/ag261dX2UKGgGaAloD0MIeEMaFTi5B8CUhpRSlGgVSzJoFkdAp6bAXuVopXV9lChoBmgJaA9DCJDbL5+s+ADAlIaUUpRoFUsyaBZHQKemgtzS1E51fZQoaAZoCWgPQwg83uS36GT4v5SGlFKUaBVLMmgWR0CnpkKXF98adX2UKGgGaAloD0MI5ShAFMw4AcCUhpRSlGgVSzJoFkdAp6f/S0BwM3V9lChoBmgJaA9DCDfEeM2rGgPAlIaUUpRoFUsyaBZHQKenwB4lhPV1fZQoaAZoCWgPQwjQ7/s3L04EwJSGlFKUaBVLMmgWR0Cnp4J/gBLgdX2UKGgGaAloD0MIm+PcJtwLAsCUhpRSlGgVSzJoFkdAp6dCdvsJIHV9lChoBmgJaA9DCGQHlbiOMf2/lIaUUpRoFUsyaBZHQKepAUu+RHR1fZQoaAZoCWgPQwgpr5XQXfIBwJSGlFKUaBVLMmgWR0CnqMI9TxXodX2UKGgGaAloD0MI/Z/DfHmBBsCUhpRSlGgVSzJoFkdAp6iE32mHg3V9lChoBmgJaA9DCIvBw7Rvbv6/lIaUUpRoFUsyaBZHQKeoRPE87p51ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20fb940d68e0740488ddbbc5da5e4617c1233fe33546c4cb08c4fefa59c016c6
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a8048ed8d070d7ddae9ef8eb94cf2545e597eb6224193f5214b16d3365e104c
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f505f175310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f505f173ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681029908422426507, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADFHKPnMXBb1OSxc/DFHKPnMXBb1OSxc/DFHKPnMXBb1OSxc/DFHKPnMXBb1OSxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPR4lvpYxhD53YbM/65hLv6xCob91pJo/YAxnPwyADz8Iycu+K2j2Pr4kjr/E5ri/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAMUco+cxcFvU5LFz9QcJc8VNmgu12mUzwMUco+cxcFvU5LFz9QcJc8VNmgu12mUzwMUco+cxcFvU5LFz9QcJc8VNmgu12mUzwMUco+cxcFvU5LFz9QcJc8VNmgu12mUzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3951496 -0.03249307 0.5909928 ]\n [ 0.3951496 -0.03249307 0.5909928 ]\n [ 0.3951496 -0.03249307 0.5909928 ]\n [ 0.3951496 -0.03249307 0.5909928 ]]", "desired_goal": "[[-0.16124816 0.2581908 1.4014119 ]\n [-0.7953021 -1.2598472 1.2081438 ]\n [ 0.9025326 0.5605476 -0.39801812]\n [ 0.4812635 -1.1104963 -1.4445424 ]]", "observation": "[[ 0.3951496 -0.03249307 0.5909928 0.01848617 -0.00490872 0.01291808]\n [ 0.3951496 -0.03249307 0.5909928 0.01848617 -0.00490872 0.01291808]\n [ 0.3951496 -0.03249307 0.5909928 0.01848617 -0.00490872 0.01291808]\n [ 0.3951496 -0.03249307 0.5909928 0.01848617 -0.00490872 0.01291808]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuYSAvWTYFT4rcZE+e3m2vV1N6T0rbik+pAQSPrMxDL4ZS0M+/gOkPe4s0z3wiVk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06275315 0.14633328 0.28406653]\n [-0.08909889 0.11391709 0.16545932]\n [ 0.14259583 -0.13690834 0.19071616]\n [ 0.08008574 0.10311304 0.05311006]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwf9WsmPjBMCUhpRSlIwBbJRLMowBdJRHQKeNEGMXJo11fZQoaAZoCWgPQwjWxAJf0a3/v5SGlFKUaBVLMmgWR0CnjNDWkJrtdX2UKGgGaAloD0MInwQ25+A5B8CUhpRSlGgVSzJoFkdAp4yTV2A5JnV9lChoBmgJaA9DCPmE7LyNjf+/lIaUUpRoFUsyaBZHQKeMUxrzoU11fZQoaAZoCWgPQwiIga59AV0CwJSGlFKUaBVLMmgWR0Cnjfyde6ZqdX2UKGgGaAloD0MIpwhwehcv/L+UhpRSlGgVSzJoFkdAp429fgJkXnV9lChoBmgJaA9DCGaIY13cJgLAlIaUUpRoFUsyaBZHQKeNgC/47BB1fZQoaAZoCWgPQwijHw2nzA37v5SGlFKUaBVLMmgWR0CnjUAqEvkBdX2UKGgGaAloD0MIgv+tZMeGCsCUhpRSlGgVSzJoFkdAp47r94u9OHV9lChoBmgJaA9DCGA6rdug9gPAlIaUUpRoFUsyaBZHQKeOrKDCgsd1fZQoaAZoCWgPQwhvDWyVYLH7v5SGlFKUaBVLMmgWR0Cnjm8BU70WdX2UKGgGaAloD0MI0Qg2rn8XC8CUhpRSlGgVSzJoFkdAp44u2JBPbnV9lChoBmgJaA9DCIem7PSD+gbAlIaUUpRoFUsyaBZHQKeP3RQ79yd1fZQoaAZoCWgPQwgwZeCAli4EwJSGlFKUaBVLMmgWR0Cnj53vH93sdX2UKGgGaAloD0MI1T4djxnoAsCUhpRSlGgVSzJoFkdAp49geA/cFnV9lChoBmgJaA9DCI2ZRL3gMw7AlIaUUpRoFUsyaBZHQKePIIAOrhl1fZQoaAZoCWgPQwjmsPuO4fH8v5SGlFKUaBVLMmgWR0CnkNnivPkadX2UKGgGaAloD0MIGZC93v3xA8CUhpRSlGgVSzJoFkdAp5CaTY/Vy3V9lChoBmgJaA9DCD+toj80c/a/lIaUUpRoFUsyaBZHQKeQXKji4rl1fZQoaAZoCWgPQwgyxofZy8YQwJSGlFKUaBVLMmgWR0CnkBxdyDIzdX2UKGgGaAloD0MICU/o9Scx/7+UhpRSlGgVSzJoFkdAp5HaYu01InV9lChoBmgJaA9DCFUX8DLDJgHAlIaUUpRoFUsyaBZHQKeRm0m+j/N1fZQoaAZoCWgPQwj43XTLDpEEwJSGlFKUaBVLMmgWR0CnkV4fW+XadX2UKGgGaAloD0MImnlyTYHMAsCUhpRSlGgVSzJoFkdAp5EeXHBDX3V9lChoBmgJaA9DCFIN+z2xjgnAlIaUUpRoFUsyaBZHQKeS4ZXMhX91fZQoaAZoCWgPQwgLtaZ5x0kEwJSGlFKUaBVLMmgWR0CnkqIqCpWFdX2UKGgGaAloD0MILEgzFk3n/7+UhpRSlGgVSzJoFkdAp5Jkh1Tzd3V9lChoBmgJaA9DCIPBNXf0Hw/AlIaUUpRoFUsyaBZHQKeSJL0z0pV1fZQoaAZoCWgPQwiC5J1DGToSwJSGlFKUaBVLMmgWR0Cnk+WqkuYhdX2UKGgGaAloD0MIUP2DSIb8AsCUhpRSlGgVSzJoFkdAp5OmQlruY3V9lChoBmgJaA9DCBNHHogsEgTAlIaUUpRoFUsyaBZHQKeTaLAHmih1fZQoaAZoCWgPQwhgWWlSCvr+v5SGlFKUaBVLMmgWR0CnkyjP4VRDdX2UKGgGaAloD0MI3gVKCizAAMCUhpRSlGgVSzJoFkdAp5TmQKa5PXV9lChoBmgJaA9DCBCzl22n7QfAlIaUUpRoFUsyaBZHQKeUpxtHhCN1fZQoaAZoCWgPQwiTjJyFPe0AwJSGlFKUaBVLMmgWR0CnlGl/hESedX2UKGgGaAloD0MIAOMZNPRPAMCUhpRSlGgVSzJoFkdAp5QpZbILgHV9lChoBmgJaA9DCIP6ljldVg3AlIaUUpRoFUsyaBZHQKeV7fuTibV1fZQoaAZoCWgPQwilFHR7SWMEwJSGlFKUaBVLMmgWR0Cnla7TlT3qdX2UKGgGaAloD0MIoYSZtn8l9r+UhpRSlGgVSzJoFkdAp5VxdGAkLXV9lChoBmgJaA9DCKta0lEO5g3AlIaUUpRoFUsyaBZHQKeVMYIBzWB1fZQoaAZoCWgPQwhF14UfnG8KwJSGlFKUaBVLMmgWR0Cnlvag2606dX2UKGgGaAloD0MIYcJoVrYPDMCUhpRSlGgVSzJoFkdAp5a3SWqtHXV9lChoBmgJaA9DCFu0AG2ruQPAlIaUUpRoFUsyaBZHQKeWef29L6F1fZQoaAZoCWgPQwjWbrvQXOcLwJSGlFKUaBVLMmgWR0CnljnnuAqedX2UKGgGaAloD0MIamrZWl/k/L+UhpRSlGgVSzJoFkdAp5gINTcZcnV9lChoBmgJaA9DCJMANbVsrQXAlIaUUpRoFUsyaBZHQKeXyPdVNpN1fZQoaAZoCWgPQwh9PsqICyABwJSGlFKUaBVLMmgWR0Cnl4tzjm0WdX2UKGgGaAloD0MIOdOE7SeDFcCUhpRSlGgVSzJoFkdAp5dLbvgFYHV9lChoBmgJaA9DCGmNQSeEzgPAlIaUUpRoFUsyaBZHQKeZF987ZFp1fZQoaAZoCWgPQwi2SUVj7e8PwJSGlFKUaBVLMmgWR0CnmNidSVGDdX2UKGgGaAloD0MIB7KeWn1VAcCUhpRSlGgVSzJoFkdAp5ia7wrlNnV9lChoBmgJaA9DCJhNgGH5kxLAlIaUUpRoFUsyaBZHQKeYWvPkaMt1fZQoaAZoCWgPQwg0EqERbHwNwJSGlFKUaBVLMmgWR0CnmhnwG4ZudX2UKGgGaAloD0MIDcfzGVCvAsCUhpRSlGgVSzJoFkdAp5napHZsbnV9lChoBmgJaA9DCIB/SpUoe/m/lIaUUpRoFUsyaBZHQKeZnR/EwWZ1fZQoaAZoCWgPQwiKVu4FZhUTwJSGlFKUaBVLMmgWR0CnmV0qx1PndX2UKGgGaAloD0MIUADFyJJZBsCUhpRSlGgVSzJoFkdAp5sg8dPtUnV9lChoBmgJaA9DCE/JObGHdgLAlIaUUpRoFUsyaBZHQKea4ZqmCRR1fZQoaAZoCWgPQwiWd9UD5oENwJSGlFKUaBVLMmgWR0CnmqQjlgc+dX2UKGgGaAloD0MIZYnOMosQBcCUhpRSlGgVSzJoFkdAp5pkNSZSenV9lChoBmgJaA9DCLddaK7TCAHAlIaUUpRoFUsyaBZHQKec1wNsnAt1fZQoaAZoCWgPQwhvoMA7+dQDwJSGlFKUaBVLMmgWR0CnnJiGFi8WdX2UKGgGaAloD0MIUdzxJr9FA8CUhpRSlGgVSzJoFkdAp5xcDwH7g3V9lChoBmgJaA9DCGJJufscXxHAlIaUUpRoFUsyaBZHQKecHS6UaAF1fZQoaAZoCWgPQwiiluZWCMsEwJSGlFKUaBVLMmgWR0CnnpgE2YOUdX2UKGgGaAloD0MIBU8hV+o5BMCUhpRSlGgVSzJoFkdAp55aNuLrHHV9lChoBmgJaA9DCI+K/zuiIgDAlIaUUpRoFUsyaBZHQKeeHcmjTKF1fZQoaAZoCWgPQwhQcodNZCYCwJSGlFKUaBVLMmgWR0Cnnd8zQ/ordX2UKGgGaAloD0MIatswCoJnBsCUhpRSlGgVSzJoFkdAp6Bf36AOKHV9lChoBmgJaA9DCIC21awzHgTAlIaUUpRoFUsyaBZHQKegISNfgJl1fZQoaAZoCWgPQwgYQWMmUW8GwJSGlFKUaBVLMmgWR0Cnn+QXyiEhdX2UKGgGaAloD0MIyNKHLqhPA8CUhpRSlGgVSzJoFkdAp5+lBD5TInV9lChoBmgJaA9DCLjNVIhHwg3AlIaUUpRoFUsyaBZHQKeiHbHp8nh1fZQoaAZoCWgPQwjmdFlMbP4GwJSGlFKUaBVLMmgWR0Cnod8XFcY7dX2UKGgGaAloD0MIOkAwR49fCcCUhpRSlGgVSzJoFkdAp6GiUcGTtHV9lChoBmgJaA9DCJet9UVCWwXAlIaUUpRoFUsyaBZHQKehY7Sy+pR1fZQoaAZoCWgPQwgj3GRUGcb8v5SGlFKUaBVLMmgWR0Cno9hKDkELdX2UKGgGaAloD0MIlbcjnBbcAMCUhpRSlGgVSzJoFkdAp6OZcNYr8XV9lChoBmgJaA9DCBDM0eP3tgnAlIaUUpRoFUsyaBZHQKejXUmUnoh1fZQoaAZoCWgPQwi6SQwCK8f7v5SGlFKUaBVLMmgWR0Cnox5U96kZdX2UKGgGaAloD0MIgA7z5QU4EMCUhpRSlGgVSzJoFkdAp6T2gL7XQXV9lChoBmgJaA9DCGkaFM0DmAHAlIaUUpRoFUsyaBZHQKektz9S/CZ1fZQoaAZoCWgPQwg1Q6ooXsUHwJSGlFKUaBVLMmgWR0CnpHnmJWNndX2UKGgGaAloD0MIKxN+qZ/3/7+UhpRSlGgVSzJoFkdAp6Q51oxpL3V9lChoBmgJaA9DCNNQo5Bklv6/lIaUUpRoFUsyaBZHQKel9o6jnFJ1fZQoaAZoCWgPQwgXm1YKgZwDwJSGlFKUaBVLMmgWR0CnpbcinpB5dX2UKGgGaAloD0MI7PgvEARI/b+UhpRSlGgVSzJoFkdAp6V5pN9H+nV9lChoBmgJaA9DCAXEJFzI4wHAlIaUUpRoFUsyaBZHQKelOZ9d/rl1fZQoaAZoCWgPQwg6QDBHjx8DwJSGlFKUaBVLMmgWR0Cnpv/ag261dX2UKGgGaAloD0MIeEMaFTi5B8CUhpRSlGgVSzJoFkdAp6bAXuVopXV9lChoBmgJaA9DCJDbL5+s+ADAlIaUUpRoFUsyaBZHQKemgtzS1E51fZQoaAZoCWgPQwg83uS36GT4v5SGlFKUaBVLMmgWR0CnpkKXF98adX2UKGgGaAloD0MI5ShAFMw4AcCUhpRSlGgVSzJoFkdAp6f/S0BwM3V9lChoBmgJaA9DCDfEeM2rGgPAlIaUUpRoFUsyaBZHQKenwB4lhPV1fZQoaAZoCWgPQwjQ7/s3L04EwJSGlFKUaBVLMmgWR0Cnp4J/gBLgdX2UKGgGaAloD0MIm+PcJtwLAsCUhpRSlGgVSzJoFkdAp6dCdvsJIHV9lChoBmgJaA9DCGQHlbiOMf2/lIaUUpRoFUsyaBZHQKepAUu+RHR1fZQoaAZoCWgPQwgpr5XQXfIBwJSGlFKUaBVLMmgWR0CnqMI9TxXodX2UKGgGaAloD0MI/Z/DfHmBBsCUhpRSlGgVSzJoFkdAp6iE32mHg3V9lChoBmgJaA9DCIvBw7Rvbv6/lIaUUpRoFUsyaBZHQKeoRPE87p51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (765 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.3508565342985093, "std_reward": 0.9579606135368008, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-09T09:35:40.128821"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07341829d4767372271b1e67267714c9344edfa35aed53586b35b9f17449f99d
3
+ size 2381