File size: 6,489 Bytes
1976a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import glob
import os
import re
import torch

from modules import shared, devices, sd_models

re_digits = re.compile(r"\d+")
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")


def convert_diffusers_name_to_compvis(key):
    def match(match_list, regex):
        r = re.match(regex, key)
        if not r:
            return False

        match_list.clear()
        match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
        return True

    m = []

    if match(m, re_unet_down_blocks):
        return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"

    if match(m, re_unet_mid_blocks):
        return f"diffusion_model_middle_block_1_{m[1]}"

    if match(m, re_unet_up_blocks):
        return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"

    if match(m, re_text_block):
        return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"

    return key


class LoraOnDisk:
    def __init__(self, name, filename):
        self.name = name
        self.filename = filename


class LoraModule:
    def __init__(self, name):
        self.name = name
        self.multiplier = 1.0
        self.modules = {}
        self.mtime = None


class LoraUpDownModule:
    def __init__(self):
        self.up = None
        self.down = None
        self.alpha = None


def assign_lora_names_to_compvis_modules(sd_model):
    lora_layer_mapping = {}

    for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
        lora_name = name.replace(".", "_")
        lora_layer_mapping[lora_name] = module
        module.lora_layer_name = lora_name

    for name, module in shared.sd_model.model.named_modules():
        lora_name = name.replace(".", "_")
        lora_layer_mapping[lora_name] = module
        module.lora_layer_name = lora_name

    sd_model.lora_layer_mapping = lora_layer_mapping


def load_lora(name, filename):
    lora = LoraModule(name)
    lora.mtime = os.path.getmtime(filename)

    sd = sd_models.read_state_dict(filename)

    keys_failed_to_match = []

    for key_diffusers, weight in sd.items():
        fullkey = convert_diffusers_name_to_compvis(key_diffusers)
        key, lora_key = fullkey.split(".", 1)

        sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
        if sd_module is None:
            keys_failed_to_match.append(key_diffusers)
            continue

        lora_module = lora.modules.get(key, None)
        if lora_module is None:
            lora_module = LoraUpDownModule()
            lora.modules[key] = lora_module

        if lora_key == "alpha":
            lora_module.alpha = weight.item()
            continue

        if type(sd_module) == torch.nn.Linear:
            module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
        elif type(sd_module) == torch.nn.Conv2d:
            module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
        else:
            assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'

        with torch.no_grad():
            module.weight.copy_(weight)

        module.to(device=devices.device, dtype=devices.dtype)

        if lora_key == "lora_up.weight":
            lora_module.up = module
        elif lora_key == "lora_down.weight":
            lora_module.down = module
        else:
            assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha'

    if len(keys_failed_to_match) > 0:
        print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")

    return lora


def load_loras(names, multipliers=None):
    already_loaded = {}

    for lora in loaded_loras:
        if lora.name in names:
            already_loaded[lora.name] = lora

    loaded_loras.clear()

    loras_on_disk = [available_loras.get(name, None) for name in names]
    if any([x is None for x in loras_on_disk]):
        list_available_loras()

        loras_on_disk = [available_loras.get(name, None) for name in names]

    for i, name in enumerate(names):
        lora = already_loaded.get(name, None)

        lora_on_disk = loras_on_disk[i]
        if lora_on_disk is not None:
            if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
                lora = load_lora(name, lora_on_disk.filename)

        if lora is None:
            print(f"Couldn't find Lora with name {name}")
            continue

        lora.multiplier = multipliers[i] if multipliers else 1.0
        loaded_loras.append(lora)


def lora_forward(module, input, res):
    if len(loaded_loras) == 0:
        return res

    lora_layer_name = getattr(module, 'lora_layer_name', None)
    for lora in loaded_loras:
        module = lora.modules.get(lora_layer_name, None)
        if module is not None:
            if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
                res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
            else:
                res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)

    return res


def lora_Linear_forward(self, input):
    return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))


def lora_Conv2d_forward(self, input):
    return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))


def list_available_loras():
    available_loras.clear()

    os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)

    candidates = \
        glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.pt'), recursive=True) + \
        glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \
        glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True)

    for filename in sorted(candidates):
        if os.path.isdir(filename):
            continue

        name = os.path.splitext(os.path.basename(filename))[0]

        available_loras[name] = LoraOnDisk(name, filename)


available_loras = {}
loaded_loras = []

list_available_loras()