zhengqilin
commited on
Commit
·
5e185f5
1
Parent(s):
96fc329
handler.py
Browse files- handler.py +60 -10
handler.py
CHANGED
@@ -142,7 +142,7 @@ class EndpointHandler():
|
|
142 |
Return:
|
143 |
A :obj:`list` | `dict`: will be serialized and returned
|
144 |
"""
|
145 |
-
|
146 |
"do_not_save_samples": True,
|
147 |
"do_not_save_grid": True,
|
148 |
"outpath_samples": "./output",
|
@@ -155,15 +155,65 @@ class EndpointHandler():
|
|
155 |
"height": 768,
|
156 |
"seed": -1,
|
157 |
}
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
processed = process_images(p)
|
168 |
single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
|
169 |
return {
|
|
|
142 |
Return:
|
143 |
A :obj:`list` | `dict`: will be serialized and returned
|
144 |
"""
|
145 |
+
txt2img_args = {
|
146 |
"do_not_save_samples": True,
|
147 |
"do_not_save_grid": True,
|
148 |
"outpath_samples": "./output",
|
|
|
155 |
"height": 768,
|
156 |
"seed": -1,
|
157 |
}
|
158 |
+
img2img_args = {
|
159 |
+
"init_images": ["data:image/png;base64,"],
|
160 |
+
"resize_mode": 0,
|
161 |
+
"denoising_strength": 0.75,
|
162 |
+
"image_cfg_scale": 0,
|
163 |
+
"mask_blur": 4,
|
164 |
+
"inpainting_fill": 0,
|
165 |
+
"inpaint_full_res": 1,
|
166 |
+
"inpaint_full_res_padding": 0,
|
167 |
+
"inpainting_mask_invert": 0,
|
168 |
+
"initial_noise_multiplier": 0,
|
169 |
+
"prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
|
170 |
+
"styles": [],
|
171 |
+
"seed": -1,
|
172 |
+
"subseed": -1,
|
173 |
+
"subseed_strength": 0,
|
174 |
+
"seed_resize_from_h": -1,
|
175 |
+
"seed_resize_from_w": -1,
|
176 |
+
"sampler_name": "Euler a",
|
177 |
+
"batch_size": 1,
|
178 |
+
"n_iter": 1,
|
179 |
+
"steps": 50,
|
180 |
+
"cfg_scale": 7,
|
181 |
+
"width": 512,
|
182 |
+
"height": 512,
|
183 |
+
"restore_faces": 0,
|
184 |
+
"tiling": 0,
|
185 |
+
"negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
|
186 |
+
"eta": 0,
|
187 |
+
"s_churn": 0,
|
188 |
+
"s_tmax": 0,
|
189 |
+
"s_tmin": 0,
|
190 |
+
"s_noise": 1,
|
191 |
+
"override_settings": {},
|
192 |
+
"override_settings_restore_afterwards": 1,
|
193 |
+
"script_args": [],
|
194 |
+
"sampler_index": "Euler",
|
195 |
+
"include_init_images": 0
|
196 |
+
}
|
197 |
+
|
198 |
+
p = None
|
199 |
+
if data["type"] == "txt2img":
|
200 |
+
if data["inputs"]:
|
201 |
+
for field in txt2img_args:
|
202 |
+
if field in data["inputs"].keys():
|
203 |
+
txt2img_args[field] = data["inputs"][field]
|
204 |
+
# if "prompt" in data["inputs"].keys():
|
205 |
+
# prompt = data["inputs"]["prompt"]
|
206 |
+
# print("get prompt from request: ", prompt)
|
207 |
+
# args["prompt"] = prompt
|
208 |
+
p = StableDiffusionProcessingTxt2Img(sd_model=self.shared.sd_model, **txt2img_args)
|
209 |
+
if data["type"] == "txt2img":
|
210 |
+
if data["inputs"]:
|
211 |
+
for field in img2img_args:
|
212 |
+
if field in data["inputs"].keys():
|
213 |
+
img2img_args[field] = data["inputs"][field]
|
214 |
+
p = StableDiffusionProcessingImg2Img(sd_model=self.shared.sd_model, **img2img_args)
|
215 |
+
if p is None:
|
216 |
+
raise Exception("No processing object created")
|
217 |
processed = process_images(p)
|
218 |
single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
|
219 |
return {
|