File size: 10,798 Bytes
821ba50
 
 
 
 
4814da5
 
821ba50
 
 
 
 
 
 
 
 
 
 
4814da5
821ba50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_r50vd
tags:
- object-detection
- vision
- generated_from_trainer
model-index:
- name: suas-2025-rtdetr-finetuned-b16-lr1e-5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# suas-2025-rtdetr-finetuned-b16-lr1e-5

This model is a fine-tuned version of [PekingU/rtdetr_r50vd](https://huggingface.co/PekingU/rtdetr_r50vd) on the mfly-auton/suas-2025-synthetic-data dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6523
- Map: 0.8465
- Map 50: 0.9229
- Map 75: 0.9193
- Map Small: 0.7682
- Map Medium: 0.8561
- Map Large: 0.9144
- Mar 1: 0.7945
- Mar 10: 0.9245
- Mar 100: 0.9271
- Mar Small: 0.8316
- Mar Medium: 0.9357
- Mar Large: 0.9779
- Map Baseball-bat: 0.8128
- Mar 100 Baseball-bat: 0.892
- Map Basketball: 0.8105
- Mar 100 Basketball: 0.8993
- Map Car: -1.0
- Mar 100 Car: -1.0
- Map Football: 0.7611
- Mar 100 Football: 0.8113
- Map Human: 0.9382
- Mar 100 Human: 0.9641
- Map Luggage: 0.8579
- Mar 100 Luggage: 0.9191
- Map Mattress: 0.9384
- Mar 100 Mattress: 0.977
- Map Motorcycle: 0.9309
- Mar 100 Motorcycle: 0.9773
- Map Skis: 0.7044
- Mar 100 Skis: 0.995
- Map Snowboard: 0.9834
- Mar 100 Snowboard: 0.9932
- Map Soccer-ball: 0.8245
- Mar 100 Soccer-ball: 0.8733
- Map Stop-sign: 0.9671
- Mar 100 Stop-sign: 0.9925
- Map Tennis-racket: 0.7064
- Mar 100 Tennis-racket: 0.8539
- Map Umbrella: 0.8285
- Mar 100 Umbrella: 0.9803
- Map Volleyball: 0.787
- Mar 100 Volleyball: 0.8517

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Baseball-bat | Mar 100 Baseball-bat | Map Basketball | Mar 100 Basketball | Map Car | Mar 100 Car | Map Football | Mar 100 Football | Map Human | Mar 100 Human | Map Luggage | Mar 100 Luggage | Map Mattress | Mar 100 Mattress | Map Motorcycle | Mar 100 Motorcycle | Map Skis | Mar 100 Skis | Map Snowboard | Mar 100 Snowboard | Map Soccer-ball | Mar 100 Soccer-ball | Map Stop-sign | Mar 100 Stop-sign | Map Tennis-racket | Mar 100 Tennis-racket | Map Umbrella | Mar 100 Umbrella | Map Volleyball | Mar 100 Volleyball |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:----------------:|:--------------------:|:--------------:|:------------------:|:-------:|:-----------:|:------------:|:----------------:|:---------:|:-------------:|:-----------:|:---------------:|:------------:|:----------------:|:--------------:|:------------------:|:--------:|:------------:|:-------------:|:-----------------:|:---------------:|:-------------------:|:-------------:|:-----------------:|:-----------------:|:---------------------:|:------------:|:----------------:|:--------------:|:------------------:|
| 26.4817       | 1.0   | 438  | 7.1796          | 0.5246 | 0.6136 | 0.5998 | 0.4998    | 0.4541     | 0.685     | 0.6337 | 0.8316 | 0.8375  | 0.7077    | 0.8446     | 0.9453    | 0.3868           | 0.8129               | 0.1579         | 0.8832             | -1.0    | -1.0        | 0.5107       | 0.6099           | 0.8625    | 0.9246        | 0.6942      | 0.792           | 0.568        | 0.8388           | 0.7128         | 0.9384             | 0.085    | 0.9099       | 0.9532        | 0.9784            | 0.5658          | 0.7478              | 0.3822        | 0.9553            | 0.2726            | 0.7264                | 0.6033       | 0.9515           | 0.5895         | 0.6554             |
| 8.2849        | 2.0   | 876  | 5.1650          | 0.6623 | 0.7385 | 0.7311 | 0.6108    | 0.674      | 0.8009    | 0.6914 | 0.87   | 0.8726  | 0.7227    | 0.9081     | 0.9696    | 0.7515           | 0.8723               | 0.2886         | 0.8671             | -1.0    | -1.0        | 0.6431       | 0.7019           | 0.9057    | 0.9462        | 0.8014      | 0.8587          | 0.8949       | 0.9605           | 0.8986         | 0.9603             | 0.1247   | 0.9936       | 0.9665        | 0.9862            | 0.7817          | 0.8419              | 0.8546        | 0.9869            | 0.0862            | 0.7197                | 0.7593       | 0.9635           | 0.5151         | 0.5581             |
| 6.559         | 3.0   | 1314 | 4.4005          | 0.7504 | 0.8276 | 0.8215 | 0.7114    | 0.7272     | 0.8594    | 0.7435 | 0.8949 | 0.8966  | 0.7711    | 0.9093     | 0.975     | 0.7706           | 0.8428               | 0.6714         | 0.8801             | -1.0    | -1.0        | 0.6961       | 0.7498           | 0.9191    | 0.9553        | 0.8097      | 0.8663          | 0.9315       | 0.981            | 0.9122         | 0.9665             | 0.356    | 0.9926       | 0.9799        | 0.9927            | 0.8045          | 0.8594              | 0.9288        | 0.9846            | 0.2706            | 0.7788                | 0.7865       | 0.9736           | 0.6683         | 0.7284             |
| 6.1007        | 4.0   | 1752 | 4.3050          | 0.7733 | 0.8501 | 0.8445 | 0.672     | 0.8036     | 0.8698    | 0.75   | 0.8933 | 0.8959  | 0.7471    | 0.93       | 0.977     | 0.7927           | 0.8788               | 0.5734         | 0.7517             | -1.0    | -1.0        | 0.7111       | 0.7712           | 0.9262    | 0.959         | 0.8357      | 0.8953          | 0.9221       | 0.966            | 0.9326         | 0.9731             | 0.4091   | 0.9936       | 0.9788        | 0.9937            | 0.7975          | 0.8563              | 0.9535        | 0.9877            | 0.5879            | 0.8409                | 0.798        | 0.9753           | 0.6073         | 0.6998             |
| 5.7812        | 5.0   | 2190 | 3.9205          | 0.8281 | 0.91   | 0.9046 | 0.741     | 0.8373     | 0.9087    | 0.7819 | 0.9162 | 0.9196  | 0.8073    | 0.9294     | 0.9776    | 0.8105           | 0.8866               | 0.7005         | 0.8344             | -1.0    | -1.0        | 0.7656       | 0.8203           | 0.9326    | 0.9609        | 0.8291      | 0.9             | 0.9399       | 0.9791           | 0.9223         | 0.9695             | 0.6417   | 0.9906       | 0.977         | 0.9935            | 0.8194          | 0.8738              | 0.9422        | 0.9858            | 0.7258            | 0.8819                | 0.8433       | 0.9767           | 0.744          | 0.8208             |
| 5.4833        | 6.0   | 2628 | 3.7494          | 0.8402 | 0.9191 | 0.915  | 0.7567    | 0.861      | 0.9247    | 0.7947 | 0.9219 | 0.9246  | 0.8235    | 0.9378     | 0.9902    | 0.8153           | 0.8907               | 0.8096         | 0.9043             | -1.0    | -1.0        | 0.7586       | 0.8083           | 0.9378    | 0.9627        | 0.8322      | 0.9015          | 0.9545       | 0.989            | 0.9241         | 0.9725             | 0.7303   | 0.9926       | 0.9832        | 0.9947            | 0.8225          | 0.8707              | 0.9542        | 0.988             | 0.6731            | 0.871                 | 0.8273       | 0.9776           | 0.7398         | 0.8213             |
| 5.3134        | 7.0   | 3066 | 3.7250          | 0.8437 | 0.9213 | 0.9165 | 0.7597    | 0.854      | 0.919     | 0.7917 | 0.9213 | 0.9241  | 0.8256    | 0.9419     | 0.9775    | 0.8142           | 0.8876               | 0.8066         | 0.9014             | -1.0    | -1.0        | 0.7341       | 0.7887           | 0.9359    | 0.9624        | 0.8417      | 0.9133          | 0.9412       | 0.9782           | 0.9292         | 0.9777             | 0.713    | 0.9931       | 0.9828        | 0.9934            | 0.828           | 0.8761              | 0.963         | 0.9922            | 0.7265            | 0.8554                | 0.8307       | 0.9791           | 0.7646         | 0.8392             |
| 5.2982        | 8.0   | 3504 | 3.7825          | 0.8419 | 0.9181 | 0.9133 | 0.7599    | 0.8549     | 0.9154    | 0.7909 | 0.9198 | 0.922   | 0.8277    | 0.9355     | 0.9768    | 0.8151           | 0.8931               | 0.8242         | 0.9066             | -1.0    | -1.0        | 0.7225       | 0.772            | 0.9375    | 0.9627        | 0.8383      | 0.9052          | 0.9338       | 0.9744           | 0.9288         | 0.9755             | 0.7353   | 0.996        | 0.9818        | 0.9925            | 0.8221          | 0.873               | 0.9675        | 0.9891            | 0.6801            | 0.8466                | 0.8273       | 0.9818           | 0.7726         | 0.8397             |
| 5.1855        | 9.0   | 3942 | 3.7947          | 0.8365 | 0.913  | 0.9085 | 0.7528    | 0.8439     | 0.9104    | 0.7884 | 0.9184 | 0.9219  | 0.8189    | 0.9344     | 0.979     | 0.8041           | 0.8864               | 0.8009         | 0.8955             | -1.0    | -1.0        | 0.7239       | 0.7755           | 0.9351    | 0.9622        | 0.8444      | 0.9119          | 0.9314       | 0.9771           | 0.9241         | 0.9735             | 0.7034   | 0.995        | 0.984         | 0.995             | 0.8168          | 0.8704              | 0.9639        | 0.9922            | 0.6888            | 0.8513                | 0.8203       | 0.9808           | 0.7704         | 0.8402             |
| 5.1499        | 10.0  | 4380 | 3.6523          | 0.8465 | 0.9229 | 0.9193 | 0.7682    | 0.8561     | 0.9144    | 0.7945 | 0.9245 | 0.9271  | 0.8316    | 0.9357     | 0.9779    | 0.8128           | 0.892                | 0.8105         | 0.8993             | -1.0    | -1.0        | 0.7611       | 0.8113           | 0.9382    | 0.9641        | 0.8579      | 0.9191          | 0.9384       | 0.977            | 0.9309         | 0.9773             | 0.7044   | 0.995        | 0.9834        | 0.9932            | 0.8245          | 0.8733              | 0.9671        | 0.9925            | 0.7064            | 0.8539                | 0.8285       | 0.9803           | 0.787          | 0.8517             |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0