File size: 10,796 Bytes
e456507
 
 
 
 
77b9315
 
e456507
 
 
 
 
 
 
 
 
 
 
77b9315
e456507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_r50vd
tags:
- object-detection
- vision
- generated_from_trainer
model-index:
- name: suas-2025-rtdetr-finetuned-b16-lr3e-5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# suas-2025-rtdetr-finetuned-b16-lr3e-5

This model is a fine-tuned version of [PekingU/rtdetr_r50vd](https://huggingface.co/PekingU/rtdetr_r50vd) on the mfly-auton/suas-2025-synthetic-data dataset.
It achieves the following results on the evaluation set:
- Loss: 9.1849
- Map: 0.4811
- Map 50: 0.6742
- Map 75: 0.5153
- Map Small: 0.385
- Map Medium: 0.5129
- Map Large: 0.5739
- Mar 1: 0.5409
- Mar 10: 0.7299
- Mar 100: 0.7598
- Mar Small: 0.6142
- Mar Medium: 0.7825
- Mar Large: 0.8269
- Map Baseball-bat: 0.49
- Mar 100 Baseball-bat: 0.6707
- Map Basketball: 0.561
- Mar 100 Basketball: 0.6806
- Map Car: -1.0
- Mar 100 Car: -1.0
- Map Football: 0.3393
- Mar 100 Football: 0.6131
- Map Human: 0.7301
- Mar 100 Human: 0.9417
- Map Luggage: 0.6005
- Mar 100 Luggage: 0.8216
- Map Mattress: 0.048
- Mar 100 Mattress: 0.6785
- Map Motorcycle: 0.5833
- Mar 100 Motorcycle: 0.6382
- Map Skis: 0.8396
- Mar 100 Skis: 0.9198
- Map Snowboard: 0.6757
- Mar 100 Snowboard: 0.8016
- Map Soccer-ball: 0.3701
- Mar 100 Soccer-ball: 0.7694
- Map Stop-sign: 0.4419
- Mar 100 Stop-sign: 0.9539
- Map Tennis-racket: 0.4382
- Mar 100 Tennis-racket: 0.7518
- Map Umbrella: 0.2355
- Mar 100 Umbrella: 0.7241
- Map Volleyball: 0.382
- Mar 100 Volleyball: 0.6728

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Baseball-bat | Mar 100 Baseball-bat | Map Basketball | Mar 100 Basketball | Map Car | Mar 100 Car | Map Football | Mar 100 Football | Map Human | Mar 100 Human | Map Luggage | Mar 100 Luggage | Map Mattress | Mar 100 Mattress | Map Motorcycle | Mar 100 Motorcycle | Map Skis | Mar 100 Skis | Map Snowboard | Mar 100 Snowboard | Map Soccer-ball | Mar 100 Soccer-ball | Map Stop-sign | Mar 100 Stop-sign | Map Tennis-racket | Mar 100 Tennis-racket | Map Umbrella | Mar 100 Umbrella | Map Volleyball | Mar 100 Volleyball |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:----------------:|:--------------------:|:--------------:|:------------------:|:-------:|:-----------:|:------------:|:----------------:|:---------:|:-------------:|:-----------:|:---------------:|:------------:|:----------------:|:--------------:|:------------------:|:--------:|:------------:|:-------------:|:-----------------:|:---------------:|:-------------------:|:-------------:|:-----------------:|:-----------------:|:---------------------:|:------------:|:----------------:|:--------------:|:------------------:|
| 23.0537       | 1.0   | 438  | 9.2431          | 0.6183 | 0.7399 | 0.7053 | 0.4862    | 0.6975     | 0.6277    | 0.698  | 0.8445 | 0.863   | 0.727     | 0.8914     | 0.9333    | 0.6135           | 0.8496               | 0.4784         | 0.7922             | -1.0    | -1.0        | 0.5092       | 0.7406           | 0.7931    | 0.9349        | 0.7264      | 0.8453          | 0.4151       | 0.9649           | 0.7746         | 0.8995             | 0.7873   | 0.9153       | 0.7978        | 0.9122            | 0.3779          | 0.6828              | 0.8549        | 0.957             | 0.6769            | 0.885                 | 0.377        | 0.9438           | 0.4746         | 0.7593             |
| 9.6444        | 2.0   | 876  | 8.4354          | 0.5654 | 0.6543 | 0.6454 | 0.4377    | 0.6759     | 0.6517    | 0.6178 | 0.8051 | 0.8567  | 0.7616    | 0.8748     | 0.9001    | 0.6536           | 0.8175               | 0.4753         | 0.7836             | -1.0    | -1.0        | 0.4716       | 0.7781           | 0.7632    | 0.925         | 0.7675      | 0.8975          | 0.1446       | 0.8849           | 0.7513         | 0.884              | 0.8092   | 0.8936       | 0.796         | 0.9045            | 0.1811          | 0.8046              | 0.6988        | 0.9162            | 0.734             | 0.8762                | 0.2025       | 0.8361           | 0.4669         | 0.7924             |
| 7.9736        | 3.0   | 1314 | 8.1233          | 0.6032 | 0.7082 | 0.6974 | 0.4632    | 0.7302     | 0.7013    | 0.6284 | 0.8059 | 0.8518  | 0.7726    | 0.8713     | 0.8919    | 0.6745           | 0.7985               | 0.5687         | 0.8135             | -1.0    | -1.0        | 0.5098       | 0.7643           | 0.8075    | 0.917         | 0.7803      | 0.8888          | 0.1936       | 0.8645           | 0.8528         | 0.9092             | 0.8126   | 0.903        | 0.8344        | 0.8903            | 0.2384          | 0.8224              | 0.8343        | 0.9179            | 0.7266            | 0.8549                | 0.2001       | 0.7809           | 0.4116         | 0.8002             |
| 7.5623        | 4.0   | 1752 | 8.0717          | 0.6264 | 0.7342 | 0.7215 | 0.5182    | 0.734      | 0.7239    | 0.651  | 0.8219 | 0.8665  | 0.7837    | 0.8706     | 0.9228    | 0.7056           | 0.8205               | 0.6522         | 0.8386             | -1.0    | -1.0        | 0.5832       | 0.8142           | 0.7739    | 0.9234        | 0.808       | 0.8942          | 0.0914       | 0.8634           | 0.8597         | 0.9093             | 0.8828   | 0.9376       | 0.8274        | 0.8924            | 0.2734          | 0.8501              | 0.8612        | 0.9209            | 0.7139            | 0.8124                | 0.2524       | 0.8567           | 0.4843         | 0.7968             |
| 7.2751        | 5.0   | 2190 | 8.7630          | 0.5761 | 0.6678 | 0.6549 | 0.4548    | 0.6658     | 0.6059    | 0.6224 | 0.7803 | 0.8305  | 0.7163    | 0.8521     | 0.9175    | 0.5765           | 0.7835               | 0.5702         | 0.7898             | -1.0    | -1.0        | 0.4783       | 0.7281           | 0.7352    | 0.9097        | 0.7497      | 0.8839          | 0.0284       | 0.8625           | 0.7861         | 0.8506             | 0.8352   | 0.9277       | 0.833         | 0.8627            | 0.4065          | 0.7625              | 0.7123        | 0.9137            | 0.655             | 0.8026                | 0.2883       | 0.8388           | 0.4105         | 0.7105             |
| 7.2919        | 6.0   | 2628 | 8.3399          | 0.6044 | 0.7342 | 0.6966 | 0.4756    | 0.6987     | 0.7245    | 0.6285 | 0.7863 | 0.8232  | 0.6783    | 0.8579     | 0.8962    | 0.6153           | 0.7723               | 0.5137         | 0.7211             | -1.0    | -1.0        | 0.5038       | 0.7329           | 0.8326    | 0.9302        | 0.7848      | 0.8806          | 0.0252       | 0.7449           | 0.803          | 0.8632             | 0.8442   | 0.9158       | 0.8247        | 0.8912            | 0.4423          | 0.7519              | 0.8512        | 0.9458            | 0.6717            | 0.813                 | 0.3123       | 0.8643           | 0.4365         | 0.6975             |
| 6.9699        | 7.0   | 3066 | 8.5778          | 0.5806 | 0.7101 | 0.6569 | 0.4371    | 0.6901     | 0.7185    | 0.6187 | 0.7898 | 0.8279  | 0.6748    | 0.865      | 0.9156    | 0.6135           | 0.7665               | 0.5259         | 0.7135             | -1.0    | -1.0        | 0.3524       | 0.6591           | 0.8118    | 0.9329        | 0.7602      | 0.8796          | 0.1264       | 0.8605           | 0.7603         | 0.8343             | 0.8279   | 0.9312       | 0.8645        | 0.9105            | 0.3614          | 0.7684              | 0.711         | 0.9377            | 0.663             | 0.8212                | 0.3093       | 0.8638           | 0.4402         | 0.7118             |
| 6.7247        | 8.0   | 3504 | 8.5073          | 0.5993 | 0.7448 | 0.6827 | 0.4588    | 0.6121     | 0.7777    | 0.6438 | 0.8042 | 0.8321  | 0.6614    | 0.8377     | 0.9399    | 0.6037           | 0.7583               | 0.6004         | 0.719              | -1.0    | -1.0        | 0.4472       | 0.7137           | 0.8139    | 0.9333        | 0.7039      | 0.8694          | 0.2481       | 0.9102           | 0.8006         | 0.845              | 0.885    | 0.9599       | 0.8342        | 0.8815            | 0.398           | 0.7242              | 0.5666        | 0.9377            | 0.5825            | 0.8135                | 0.4441       | 0.8946           | 0.4621         | 0.689              |
| 6.5664        | 9.0   | 3942 | 9.0973          | 0.4861 | 0.6532 | 0.5236 | 0.3138    | 0.536      | 0.6237    | 0.5459 | 0.7169 | 0.7528  | 0.5389    | 0.7868     | 0.8686    | 0.442            | 0.6763               | 0.4655         | 0.6182             | -1.0    | -1.0        | 0.3113       | 0.5423           | 0.7863    | 0.9349        | 0.6849      | 0.8274          | 0.0783       | 0.7612           | 0.6747         | 0.7367             | 0.8484   | 0.9386       | 0.7503        | 0.8272            | 0.2637          | 0.644               | 0.4794        | 0.9464            | 0.4634            | 0.7295                | 0.2248       | 0.744            | 0.3317         | 0.6123             |
| 6.2978        | 10.0  | 4380 | 9.1849          | 0.4811 | 0.6742 | 0.5153 | 0.385     | 0.5129     | 0.5739    | 0.5409 | 0.7299 | 0.7598  | 0.6142    | 0.7825     | 0.8269    | 0.49             | 0.6707               | 0.561          | 0.6806             | -1.0    | -1.0        | 0.3393       | 0.6131           | 0.7301    | 0.9417        | 0.6005      | 0.8216          | 0.048        | 0.6785           | 0.5833         | 0.6382             | 0.8396   | 0.9198       | 0.6757        | 0.8016            | 0.3701          | 0.7694              | 0.4419        | 0.9539            | 0.4382            | 0.7518                | 0.2355       | 0.7241           | 0.382          | 0.6728             |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0