File size: 4,956 Bytes
c6a2ce9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import sys
import ast
import copy
import time
import logging
import argparse

import yaml
import jinja2
from jinja2 import meta
import easydict

import torch
from torch import distributed as dist
from torch_geometric.data import Data
from torch_geometric.datasets import RelLinkPredDataset, WordNet18RR

from ultra import models, datasets


logger = logging.getLogger(__file__)


def detect_variables(cfg_file):
    with open(cfg_file, "r") as fin:
        raw = fin.read()
    env = jinja2.Environment()
    tree = env.parse(raw)
    vars = meta.find_undeclared_variables(tree)
    return vars


def load_config(cfg_file, context=None):
    with open(cfg_file, "r") as fin:
        raw = fin.read()
    template = jinja2.Template(raw)
    instance = template.render(context)
    cfg = yaml.safe_load(instance)
    cfg = easydict.EasyDict(cfg)
    return cfg


def literal_eval(string):
    try:
        return ast.literal_eval(string)
    except (ValueError, SyntaxError):
        return string


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("-c", "--config", help="yaml configuration file", required=True)
    parser.add_argument("-s", "--seed", help="random seed for PyTorch", type=int, default=1024)

    args, unparsed = parser.parse_known_args()
    # get dynamic arguments defined in the config file
    vars = detect_variables(args.config)
    parser = argparse.ArgumentParser()
    for var in vars:
        parser.add_argument("--%s" % var, required=True)
    vars = parser.parse_known_args(unparsed)[0]
    vars = {k: literal_eval(v) for k, v in vars._get_kwargs()}

    return args, vars


def get_root_logger(file=True):
    format = "%(asctime)-10s %(message)s"
    datefmt = "%H:%M:%S"
    logging.basicConfig(format=format, datefmt=datefmt)
    logger = logging.getLogger("")
    logger.setLevel(logging.INFO)

    if file:
        handler = logging.FileHandler("log.txt")
        format = logging.Formatter(format, datefmt)
        handler.setFormatter(format)
        logger.addHandler(handler)

    return logger


def get_rank():
    if dist.is_initialized():
        return dist.get_rank()
    if "RANK" in os.environ:
        return int(os.environ["RANK"])
    return 0


def get_world_size():
    if dist.is_initialized():
        return dist.get_world_size()
    if "WORLD_SIZE" in os.environ:
        return int(os.environ["WORLD_SIZE"])
    return 1


def synchronize():
    if get_world_size() > 1:
        dist.barrier()


def get_device(cfg):
    if cfg.train.gpus:
        device = torch.device(cfg.train.gpus[get_rank()])
    else:
        device = torch.device("cpu")
    return device

def get_devices(gpus):
    if gpus is not None:
        device = torch.device(gpus[get_rank()])
    else:
        device = torch.device("cpu")
    return device


def create_working_directory(cfg):
    file_name = "working_dir.tmp"
    world_size = get_world_size()
    if cfg.train.gpus is not None and len(cfg.train.gpus) != world_size:
        error_msg = "World size is %d but found %d GPUs in the argument"
        if world_size == 1:
            error_msg += ". Did you launch with `python -m torch.distributed.launch`?"
        raise ValueError(error_msg % (world_size, len(cfg.train.gpus)))
    if world_size > 1 and not dist.is_initialized():
        dist.init_process_group("nccl", init_method="env://")

    working_dir = os.path.join(os.path.expanduser(cfg.output_dir),
                               cfg.model["class"], cfg.dataset["class"], time.strftime("%Y-%m-%d-%H-%M-%S"))

    # synchronize working directory
    if get_rank() == 0:
        with open(file_name, "w") as fout:
            fout.write(working_dir)
        os.makedirs(working_dir)
    synchronize()
    if get_rank() != 0:
        with open(file_name, "r") as fin:
            working_dir = fin.read()
    synchronize()
    if get_rank() == 0:
        os.remove(file_name)

    os.chdir(working_dir)
    return working_dir


def build_dataset(cfg):
    data_config = copy.deepcopy(cfg.dataset)
    cls = data_config.pop("class")

    ds_cls = getattr(datasets, cls)
    dataset = ds_cls(**data_config)

    if get_rank() == 0:
        logger.warning("%s dataset" % (cls if "version" not in cfg.dataset else f'{cls}({cfg.dataset.version})'))
        if cls != "JointDataset":
            logger.warning("#train: %d, #valid: %d, #test: %d" %
                        (dataset[0].target_edge_index.shape[1], dataset[1].target_edge_index.shape[1],
                            dataset[2].target_edge_index.shape[1]))
        else:
            logger.warning("#train: %d, #valid: %d, #test: %d" %
                           (sum(d.target_edge_index.shape[1] for d in dataset._data[0]),
                            sum(d.target_edge_index.shape[1] for d in dataset._data[1]),
                            sum(d.target_edge_index.shape[1] for d in dataset._data[2]),
                            ))

    return dataset