{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f229d6daa80>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682282556257996365, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAuxpL0EjZ6+UEU/P82xBEDpl5q+BN7ivv/wDb8qH2m/17YBvvwoRECtKAg/mhhkP77mdL8Dc60/v/cHP+/9/L43I2M7g11DPwyIGj+VVYVAwkfLP3oZ8r7t4SY/TR9dQJQqiT+UhBs/NtSQPuZg179B4To/Vvbdvon0Sj/ynbs8JLDkPiqDIT+I7js/aWISv3JWVD/0fgO/W42pvnuTbb9SmQE/Wi2fPvmVK78IBYw9IMI4P8bMG78sBho/e+2GPNZoGT8Cqx2/+whpP6TcvD145G6/lIQbPzbUkD42JBg/4mgdP4c1rD4qqZ8+NPDwPzhznT9bGo0/0UIpPny6aL+c230/iNwzQFPB9T+65fu/xHhIv+NM2T+RiPm+QhTCvvTOs77kLQhAH3kaP+cRRTxTRJQ/QFMqvw/i6D8dmFY/lCqJP5SEGz821JA+5mDXv7Ywoz++ADG/ccFaPwvpwj9ENHo/z64qP7NrBT/m/OC/0NHDPgSwyL+pTtq+u8UdPqkfkz/KT6E+v2TwPjZnRj+PRYY/YgrnvvJ1HD+nWLw+njiavw5gsL82mNs/GXvKvnjkbr+UhBs/NtSQPjYkGD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABz5o81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbwr0vAAAAAAes9+/AAAAABlWRzwAAAAAQxf0PwAAAACf+c49AAAAAHJh9j8AAAAA3Z+6PQAAAAClYve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW7WUNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJfolD0AAAAAgPDhvwAAAABXXRI+AAAAAD6B6T8AAAAAfuW7PAAAAADekd8/AAAAAO1vvL0AAAAAWV/pvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHDwmbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAvMtC9AAAAAGXv478AAAAAWp9SvQAAAAC5WuU/AAAAAKe1c70AAAAAN/rnPwAAAACwbzA9AAAAAJVl878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbI482AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZIuyvQAAAAAaovy/AAAAANBJLzsAAAAABpDpPwAAAACxrra8AAAAAHiH4T8AAAAACczzvQAAAAAGnN+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJjTNar3j++MAWyUTegDjAF0lEdArgr7N0NjLHV9lChoBkdAmieBbjcVQGgHTegDaAhHQK4SWfcvduZ1fZQoaAZHQJjd28pTdcloB03oA2gIR0CuFf3oLXtjdX2UKGgGR0CWR6+Lm6oVaAdN6ANoCEdArhaG6GxlhHV9lChoBkdAmJtyAxzq8mgHTegDaAhHQK4XjBPbfxd1fZQoaAZHQJkpFgtvn8toB03oA2gIR0CuHorM9r44dX2UKGgGR0CZskiPyTY/aAdN6ANoCEdAriON7MPjGXV9lChoBkdAmBxi4J/oaGgHTegDaAhHQK4kZtzCDVZ1fZQoaAZHQJfrfIgeRxNoB03oA2gIR0CuJgdWp6yCdX2UKGgGR0CWVmnlnyuqaAdN6ANoCEdAri75kPMB63V9lChoBkdAls5hFVktmWgHTegDaAhHQK4yvNIK+i91fZQoaAZHQJH/NgOSW7hoB03oA2gIR0CuM1IysS00dX2UKGgGR0CV8BrYGt6paAdN6ANoCEdArjRb+1jRUnV9lChoBkdAl1OVS0jTrmgHTegDaAhHQK471EsJ6Y51fZQoaAZHQJUX7S2H+IdoB03oA2gIR0CuQDVQZXMhdX2UKGgGR0CVQuS1Vo6CaAdN6ANoCEdArkExqsU7CHV9lChoBkdAlPgca4tpVWgHTegDaAhHQK5CsxRl6JJ1fZQoaAZHQJTD3557gKpoB03oA2gIR0CuTLhpQDV6dX2UKGgGR0CSSHYcebNKaAdN6ANoCEdArlA9s54nnnV9lChoBkdAk2SENOM2nGgHTegDaAhHQK5QygbIcR11fZQoaAZHQJPc3BMzuWtoB03oA2gIR0CuUc91dPcjdX2UKGgGR0CUa8EFnqVyaAdN6ANoCEdArlkETBZZCHV9lChoBkdAlw8eHWSU1WgHTegDaAhHQK5cyYtxuKp1fZQoaAZHQJVswFqzqr1oB03oA2gIR0CuXVmp2ll9dX2UKGgGR0CVjPRtgrpaaAdN6ANoCEdArl6rTBqKxnV9lChoBkdAl8oDPjXFtWgHTegDaAhHQK5prOHnEEV1fZQoaAZHQJbkxsSCe3BoB03oA2gIR0CubVBn8KoidX2UKGgGR0CXNvJng5zYaAdN6ANoCEdArm3e1YyO73V9lChoBkdAmN8fY4ACGWgHTegDaAhHQK5u2jqv/zd1fZQoaAZHQJeC0IkZ75VoB03oA2gIR0CudjPPLPlddX2UKGgGR0CYDl2d/axpaAdN6ANoCEdArnnkRxtHhHV9lChoBkdAk/8f0VafSWgHTegDaAhHQK56cB5ooNN1fZQoaAZHQJeBMMvysjpoB03oA2gIR0Cue3C2MKkVdX2UKGgGR0CYwh5o4+8oaAdN6ANoCEdAroXkse4kNXV9lChoBkdAmCe/ViF0xWgHTegDaAhHQK6KXKbrkbR1fZQoaAZHQJhVKDL8rI5oB03oA2gIR0CuiuuzQeFMdX2UKGgGR0CX9dV/c32maAdN6ANoCEdArovjblA/s3V9lChoBkdAmYl0+C9RJmgHTegDaAhHQK6TJS619fF1fZQoaAZHQJd71gqmTDBoB03oA2gIR0CulwApz90jdX2UKGgGR0CWmPbOeJ53aAdN6ANoCEdArpeQ/RmbsnV9lChoBkdAl+AX889wFWgHTegDaAhHQK6YoyeI2wV1fZQoaAZHQJeZKjN6gNBoB03oA2gIR0CuojfBeokzdX2UKGgGR0CYqrcv/R3NaAdN6ANoCEdArqfqWom5UnV9lChoBkdAlrBt0JWvKWgHTegDaAhHQK6odSuyNXJ1fZQoaAZHQJcITL7oB7xoB03oA2gIR0CuqXof0VafdX2UKGgGR0CXD3RfF72MaAdN6ANoCEdArrDQflp48nV9lChoBkdAmUUUHyEtd2gHTegDaAhHQK60efA9FF51fZQoaAZHQJhJoLa24NJoB03oA2gIR0CutQrDqGDddX2UKGgGR0CYkcJ3xFy8aAdN6ANoCEdArrYsW43FUHV9lChoBkdAlrzyo0hvBWgHTegDaAhHQK6+rQoCuEF1fZQoaAZHQJdvltSAH3VoB03oA2gIR0CuxKDUmUnpdX2UKGgGR0CYex7ojfNzaAdN6ANoCEdArsWMiY9gW3V9lChoBkdAlnsZZntfHGgHTegDaAhHQK7GxwS8J2N1fZQoaAZHQJd2d53Tuv5oB03oA2gIR0CuzfIUi6g/dX2UKGgGR0CX48EFW4mUaAdN6ANoCEdArtHQ7LdN4HV9lChoBkdAmDZeTJQtSWgHTegDaAhHQK7SZSJCSid1fZQoaAZHQJW9UNVinYRoB03oA2gIR0Cu02loL5RCdX2UKGgGR0CXWK5kK/mDaAdN6ANoCEdArttKqIacZ3V9lChoBkdAlXSiJTER8WgHTegDaAhHQK7hLnbItDl1fZQoaAZHQJVU20TlDF9oB03oA2gIR0Cu4iXkxREXdX2UKGgGR0CU7qmtQsPKaAdN6ANoCEdAruPT2nKnvXV9lChoBkdAmMseVcD8tWgHTegDaAhHQK7r+akyk9F1fZQoaAZHQJguqm+CbttoB03oA2gIR0Cu79jps41hdX2UKGgGR0Caqa8jRlYmaAdN6ANoCEdArvBuy1NQCXV9lChoBkdAmRo6oQ4CIWgHTegDaAhHQK7xiPLgXM11fZQoaAZHQJij4DuBtk5oB03oA2gIR0Cu+PaMzdk8dX2UKGgGR0CXhaRpDeCTaAdN6ANoCEdArv5qEUTL4nV9lChoBkdAley3uVopQWgHTegDaAhHQK7/TZsbedl1fZQoaAZHQJptwQ+UyHpoB03oA2gIR0CvAOWhZha1dX2UKGgGR0CZEJmUW2w3aAdN6ANoCEdArwlDU/fO2XV9lChoBkdAld9h2B8QZmgHTegDaAhHQK8M+CJXQt11fZQoaAZHQJX7tlAeJYVoB03oA2gIR0CvDYP3rUsndX2UKGgGR0CYiRpFTefqaAdN6ANoCEdArw6JCMPz4HV9lChoBkdAmQUTL0SRKmgHTegDaAhHQK8VzWHUMG51fZQoaAZHQJmAvEhq0t1oB03oA2gIR0CvGh0zj3mFdX2UKGgGR0CY45yZKFqSaAdN6ANoCEdArxrqz7di2HV9lChoBkdAm8MQ/gR9PWgHTegDaAhHQK8cbI3irDJ1fZQoaAZHQJkVf6InBtVoB03oA2gIR0CvJl9ph4MXdX2UKGgGR0CcPNMiKR+0aAdN6ANoCEdAryn3z+WGAXV9lChoBkdAlziCmqHXVmgHTegDaAhHQK8qg8yvcJt1fZQoaAZHQJp0Ukpqh11oB03oA2gIR0CvK4G5MDfWdX2UKGgGR0Cc47HhS9/SaAdN6ANoCEdArzLj2alUInV9lChoBkdAnQRz1K5CnmgHTegDaAhHQK82ncEeQuF1fZQoaAZHQJz3FNCZ4OdoB03oA2gIR0CvNzxqfvnbdX2UKGgGR0Cc5NBZpztDaAdN6ANoCEdArzi3BFd9lXV9lChoBkdAmnfEnw5NoWgHTegDaAhHQK9DspAlfJF1fZQoaAZHQJlIb2IwdsBoB03oA2gIR0CvR13C0ngHdX2UKGgGR0CbFDmNzbN9aAdN6ANoCEdAr0fo2ETQFHV9lChoBkdAmwbCQ5myxGgHTegDaAhHQK9I9G0/nnx1fZQoaAZHQJfwmaJAMUhoB03oA2gIR0CvUJicf/3ndX2UKGgGR0CblRuuRs/IaAdN6ANoCEdAr1R3ogV45nV9lChoBkdAkxjkWl/H52gHTegDaAhHQK9VCWu5jH51fZQoaAZHQJhAkY1pCa9oB03oA2gIR0CvVhdLYf4idX2UKGgGR0CV2ljsUqQSaAdN6ANoCEdAr2FgMYuTR3V9lChoBkdAm7zxuCPIXGgHTegDaAhHQK9lPrzoUzt1fZQoaAZHQJw6Dl6qsEJoB03oA2gIR0CvZdQlByCGdX2UKGgGR0CdkpIdlum8aAdN6ANoCEdAr2bPLcKw6nV9lChoBkdAm8lADzRQamgHTegDaAhHQK9uIzMRpUR1fZQoaAZHQJtv2Dyvs7doB03oA2gIR0CvccnEMspYdX2UKGgGR0CZgAlb/wRXaAdN6ANoCEdAr3JbmW+oL3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}