update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: TCS_Pair
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# TCS_Pair
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [mgh6/esm_cluster_35M_linear](https://huggingface.co/mgh6/esm_cluster_35M_linear) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.1395
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 0.001
|
36 |
+
- train_batch_size: 80
|
37 |
+
- eval_batch_size: 80
|
38 |
+
- seed: 42
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- num_epochs: 8
|
42 |
+
|
43 |
+
### Training results
|
44 |
+
|
45 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
46 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
47 |
+
| 0.1829 | 0.13 | 100 | 0.2207 |
|
48 |
+
| 0.1137 | 0.27 | 200 | 0.1531 |
|
49 |
+
| 0.0984 | 0.4 | 300 | 0.1516 |
|
50 |
+
| 0.0945 | 0.54 | 400 | 0.1510 |
|
51 |
+
| 0.0862 | 0.67 | 500 | 0.1676 |
|
52 |
+
| 0.0855 | 0.81 | 600 | 0.1601 |
|
53 |
+
| 0.0798 | 0.94 | 700 | 0.1429 |
|
54 |
+
| 0.0664 | 1.07 | 800 | 0.1770 |
|
55 |
+
| 0.0567 | 1.21 | 900 | 0.1344 |
|
56 |
+
| 0.0584 | 1.34 | 1000 | 0.1395 |
|
57 |
+
| 0.0608 | 1.48 | 1100 | 0.1423 |
|
58 |
+
| 0.0577 | 1.61 | 1200 | 0.1389 |
|
59 |
+
| 0.0591 | 1.74 | 1300 | 0.1519 |
|
60 |
+
| 0.0618 | 1.88 | 1400 | 0.1268 |
|
61 |
+
| 0.0505 | 2.01 | 1500 | 0.1313 |
|
62 |
+
| 0.035 | 2.15 | 1600 | 0.1426 |
|
63 |
+
| 0.0422 | 2.28 | 1700 | 0.1324 |
|
64 |
+
| 0.0408 | 2.42 | 1800 | 0.1403 |
|
65 |
+
| 0.0415 | 2.55 | 1900 | 0.1328 |
|
66 |
+
| 0.0424 | 2.68 | 2000 | 0.1684 |
|
67 |
+
| 0.043 | 2.82 | 2100 | 0.1509 |
|
68 |
+
| 0.0412 | 2.95 | 2200 | 0.1266 |
|
69 |
+
| 0.0301 | 3.09 | 2300 | 0.1552 |
|
70 |
+
| 0.0234 | 3.22 | 2400 | 0.1291 |
|
71 |
+
| 0.0285 | 3.36 | 2500 | 0.1329 |
|
72 |
+
| 0.0299 | 3.49 | 2600 | 0.1441 |
|
73 |
+
| 0.0283 | 3.62 | 2700 | 0.1442 |
|
74 |
+
| 0.0286 | 3.76 | 2800 | 0.1264 |
|
75 |
+
| 0.0293 | 3.89 | 2900 | 0.1486 |
|
76 |
+
| 0.0255 | 4.03 | 3000 | 0.1309 |
|
77 |
+
| 0.0171 | 4.16 | 3100 | 0.1476 |
|
78 |
+
| 0.0175 | 4.3 | 3200 | 0.1469 |
|
79 |
+
| 0.015 | 4.43 | 3300 | 0.1454 |
|
80 |
+
| 0.0168 | 4.56 | 3400 | 0.1426 |
|
81 |
+
| 0.0185 | 4.7 | 3500 | 0.1431 |
|
82 |
+
| 0.0202 | 4.83 | 3600 | 0.1313 |
|
83 |
+
| 0.0212 | 4.97 | 3700 | 0.1499 |
|
84 |
+
| 0.0131 | 5.1 | 3800 | 0.1316 |
|
85 |
+
| 0.0112 | 5.23 | 3900 | 0.1548 |
|
86 |
+
| 0.0121 | 5.37 | 4000 | 0.1525 |
|
87 |
+
| 0.012 | 5.5 | 4100 | 0.1437 |
|
88 |
+
| 0.012 | 5.64 | 4200 | 0.1417 |
|
89 |
+
| 0.0116 | 5.77 | 4300 | 0.1511 |
|
90 |
+
| 0.0115 | 5.91 | 4400 | 0.1335 |
|
91 |
+
| 0.0096 | 6.04 | 4500 | 0.1332 |
|
92 |
+
| 0.0067 | 6.17 | 4600 | 0.1330 |
|
93 |
+
| 0.0063 | 6.31 | 4700 | 0.1348 |
|
94 |
+
| 0.0081 | 6.44 | 4800 | 0.1398 |
|
95 |
+
| 0.008 | 6.58 | 4900 | 0.1391 |
|
96 |
+
| 0.0065 | 6.71 | 5000 | 0.1375 |
|
97 |
+
| 0.0078 | 6.85 | 5100 | 0.1513 |
|
98 |
+
| 0.0067 | 6.98 | 5200 | 0.1376 |
|
99 |
+
| 0.0053 | 7.11 | 5300 | 0.1389 |
|
100 |
+
| 0.0039 | 7.25 | 5400 | 0.1435 |
|
101 |
+
| 0.0051 | 7.38 | 5500 | 0.1382 |
|
102 |
+
| 0.0036 | 7.52 | 5600 | 0.1398 |
|
103 |
+
| 0.0046 | 7.65 | 5700 | 0.1367 |
|
104 |
+
| 0.0052 | 7.79 | 5800 | 0.1384 |
|
105 |
+
| 0.004 | 7.92 | 5900 | 0.1395 |
|
106 |
+
|
107 |
+
|
108 |
+
### Framework versions
|
109 |
+
|
110 |
+
- Transformers 4.30.2
|
111 |
+
- Pytorch 2.0.1+cu117
|
112 |
+
- Datasets 2.13.1
|
113 |
+
- Tokenizers 0.13.3
|