mhdaw commited on
Commit
d21d48b
1 Parent(s): 9b5d0f0

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 288.24 +/- 22.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bd01a7a3c70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bd01a7a3d00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bd01a7a3d90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bd01a7a3e20>", "_build": "<function ActorCriticPolicy._build at 0x7bd01a7a3eb0>", "forward": "<function ActorCriticPolicy.forward at 0x7bd01a7a3f40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bd01a7ac040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bd01a7ac0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bd01a7ac160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bd01a7ac1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bd01a7ac280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bd01a7ac310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bd01a79b0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691067076280521037, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB8ZTw9lHG7lS+tO2C6ljw9GLG8J9OAPQAAgD8AAIA/M6fAPDjOwbuMTSo8YL6OPOIzE70wmHE9AACAPwAAgD9mGMM9xkyUP3XK3j5rpzm//Z0kPkeuhz4AAAAAAAAAAACuoTwmTQ0/V4MfPTFLBL95ja48ML6LPQAAAAAAAAAAJps8PpkmAT/XbQ++3E4Zv3f7cz5I+kC+AAAAAAAAAADaIdS9tigpPzfxDj7++wy/EjpEvocbOT4AAAAAAAAAAAAtjz17Ho66BtDENU1ChTCOEG06yqb7tAAAgD8AAIA/OkhRPuCyQD86exA+Hm0kv/uhvj6IRE+8AAAAAAAAAADAZ7s9ML2QPr0uhb33TgG/C3fgPfPTmb0AAAAAAAAAALO5Oj320Tq8rULivi/KgD2wthU9Lo4gvQAAgD8AAIA/ZpwGvMMRb7qY9Piy2iqFMBgigzl47Y0zAACAPwAAgD+a3Hc9FOYDP8vVar1eGgi/8K42PRl3wL0AAAAAAAAAADPH3TskeKw/uzHcPTdH974XVSC8xmWGvQAAAAAAAAAA5hoHPY9Wd7oPtgC51RDFNYS7wDpY4RQ4AACAPwAAAADm8X09w5U2ulpvhjkeX48zIpByu/5mnbgAAIA/AACAP9Ohbz4IUeU+vryqvn2oFb+RZXg+XxyavgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEOqWgOBlOMAWyUS8OMAXSUR0CoCBNj0+TvdX2UKGgGR0B0vXHggow3aAdL3WgIR0CoCDcvmHQAdX2UKGgGR0ByAWw+t8u0aAdLp2gIR0CoCDMdtEXtdX2UKGgGR0BxRynbZezEaAdLq2gIR0CoCHUkOZssdX2UKGgGR0Bwv2Hj6vaDaAdLvmgIR0CoCShsyi22dX2UKGgGR0BwxEztTkyUaAdLw2gIR0CoCS4+Sr5qdX2UKGgGR0ByAuL2pQ1raAdL2WgIR0CoCVCOmzjWdX2UKGgGR0BzEfwvxpcpaAdLyWgIR0CoCV/XoTwldX2UKGgGR0ByClhlUZNxaAdLyWgIR0CoCWaiKziTdX2UKGgGR0BziH9XLeQ/aAdNAgJoCEdAqAm8+HJtBXV9lChoBkdAcN09gWrOq2gHS8loCEdAqAnQ065oXnV9lChoBkdAc1KOTaCcw2gHS7loCEdAqAnqhpQDWHV9lChoBkdAcuB5u63AmGgHS9toCEdAqAocBfa6BnV9lChoBkdAcc0yXD3ueGgHS6RoCEdAqAoeUfPom3V9lChoBkdAcmgYJ3PiUGgHS9ZoCEdAqAo3b48EFHV9lChoBkdAcpMdnTRYzWgHS8loCEdAqApP7P6bfHV9lChoBkdAc/5QK8cuJ2gHS7BoCEdAqAp8oKD02HV9lChoBkdAcs2H446wMmgHS8doCEdAqAp7gqEvkHV9lChoBkdAcl8rRSgoPWgHS8NoCEdAqBwYeq7yx3V9lChoBkdAcltHBDXvpmgHS8FoCEdAqBw8Xxe9jHV9lChoBkdAcsMxkd3jdmgHS7xoCEdAqBxFyDIzWXV9lChoBkdAcKarmQr+YWgHS9FoCEdAqBxPio86m3V9lChoBkdAcB12xptaZGgHS8VoCEdAqBxiKpDNQnV9lChoBkdAc2tABT4tYmgHS7BoCEdAqByM/fO2RnV9lChoBkdAcncZfUnXumgHS7JoCEdAqByvfsNUfnV9lChoBkdAcLjllbu+iGgHS7ZoCEdAqB0rLhaTwHV9lChoBkdAcV0KWcBltmgHS8BoCEdAqB1XvhIe5nV9lChoBkdAc8FF8ohIOGgHS9VoCEdAqB1d0FKTS3V9lChoBkdAcmawdsBQvmgHTX8BaAhHQKgdl6gM+eR1fZQoaAZHQHEw9XT3IuJoB0vQaAhHQKgd49SuQp51fZQoaAZHQHG2tG7SRbNoB0vHaAhHQKgd/0lqrR11fZQoaAZHQGlQQsXizcBoB03oA2gIR0CoHgfTTfBOdX2UKGgGR0BzrSMHbAUMaAdL7mgIR0CoHjRjjJdTdX2UKGgGR0Bxs+TJQtSRaAdLsWgIR0CoHxGw7kn1dX2UKGgGR0BykJ+1Bt1qaAdLt2gIR0CoHyOdoWYXdX2UKGgGR0BuBH1+RYA9aAdLv2gIR0CoHyTfixVydX2UKGgGR0Bxpo3Kji4saAdLt2gIR0CoH0biIciodX2UKGgGR0BxiW3rleWwaAdLvGgIR0CoH0d3KSxJdX2UKGgGR0Byt3Zwn6VMaAdNMgFoCEdAqB+SXD3ueHV9lChoBkdAciS1CgK4QWgHS8xoCEdAqB+cZ3s5XHV9lChoBkdAcymjd56dD2gHS81oCEdAqB+2TibUgHV9lChoBkdAcMNh6Skj5mgHS75oCEdAqB/h26kIonV9lChoBkdAcTW9Vmz0H2gHS7doCEdAqB/uvt+kQHV9lChoBkdAcxkRs/IKdGgHS8toCEdAqCAcrNGEwnV9lChoBkdAcwkbkfcN6WgHS7toCEdAqCAaBVdX1nV9lChoBkdAcWql/6O5rmgHS7NoCEdAqCBsMoc7yXV9lChoBkdAcWhnZCfHxWgHS8FoCEdAqCBrN2TxG3V9lChoBkdAb53y1eBxxWgHS79oCEdAqCBrCvX9SHV9lChoBkdAc33ICU5dW2gHS8loCEdAqCBvK0UoKHV9lChoBkdAH6cxCY1HfGgHS2JoCEdAqCCKiyprDnV9lChoBkdAcjNPPcBU72gHS61oCEdAqCDplFtsN3V9lChoBkdAcXdifQKKHmgHS7loCEdAqCD+Xu3MIXV9lChoBkdAclnnFo+OfmgHS7NoCEdAqCER42S+xnV9lChoBkdAcZC+u/1xsGgHS8JoCEdAqCE5nnMdLnV9lChoBkdAcZkgmJFb3WgHS6RoCEdAqCFadYnv2HV9lChoBkdAcpV8cdYGMWgHS+loCEdAqCGNdTo+wHV9lChoBkdAc1FAKOT7mGgHS65oCEdAqCGoxagVXXV9lChoBkdAc5DdDpkf92gHS8xoCEdAqCGuvQnhKnV9lChoBkdASYfCdjG1hWgHS35oCEdAqCG41BMSK3V9lChoBkdAcrHW0qpcX2gHS7doCEdAqCHNjTa0yHV9lChoBkdAcwbndweeWmgHS9doCEdAqCJMVafSQnV9lChoBkdAc2kMm4RVZWgHS8NoCEdAqCJt3dKujnV9lChoBkdAc2q8J2MbWGgHS8FoCEdAqCJrCgsbvXV9lChoBkdAcW7yDIzWPWgHS8RoCEdAqCJvluFYdXV9lChoBkdAc4qGQ0XP7mgHS9BoCEdAqCKuax5cDHV9lChoBkdAcn/43FUADWgHS/9oCEdAqCK5B1LamHV9lChoBkdAcWjp5eJHiGgHS7doCEdAqCLRgRbr1XV9lChoBkdAcEEUkOZssWgHS8NoCEdAqCMERvm5lXV9lChoBkdAclgffoA4oGgHS85oCEdAqCM0PQOWjXV9lChoBkdAcZ7VuaWonGgHS79oCEdAqCM0tXgccXV9lChoBkdAbocGD+R5kmgHS8doCEdAqCNnWDpTuXV9lChoBkdAcvVkrwvxpmgHS7doCEdAqCNsep4r0HV9lChoBkdAcerX2ugYg2gHS7loCEdAqCOTOcDr7nV9lChoBkdAcTiYF7laKWgHS8xoCEdAqCO/BxgiNnV9lChoBkdAct7px3mmtWgHS8ZoCEdAqCPVQQ+UyHV9lChoBkdAcWuWoWHk92gHS7NoCEdAqCRVMbm2cHV9lChoBkdAc876Lfk3j2gHS8hoCEdAqCRwElme2HV9lChoBkdAb6jyYG+sYGgHS8VoCEdAqCSHuJDVpnV9lChoBkdAcl7h5xBE8mgHS9RoCEdAqCS0mhM8HXV9lChoBkdAcqO+I/JNkGgHS8NoCEdAqCTY2jwhGHV9lChoBkdAcEk1lGwzL2gHS9poCEdAqCUSNlyzX3V9lChoBkdAcfFIS13MZGgHS61oCEdAqCUksvqTr3V9lChoBkdAcsp8Jlar3mgHS9loCEdAqCU30VafSXV9lChoBkdAcg5JpnHvMWgHS8ZoCEdAqCU4caOxS3V9lChoBkdAc/vSZ0CA+mgHS9BoCEdAqCWJh4MWoHV9lChoBkdAcjWVwxWT5mgHS7BoCEdAqCWUNMGorHV9lChoBkdAcE074BV+7WgHS8NoCEdAqCWdd7fHgnV9lChoBkdAcVYb9ZRsM2gHS9NoCEdAqCXQY51eSnV9lChoBkdAcRkI1cdHUmgHS71oCEdAqCXo7xNIsnV9lChoBkdAdHQiQDFId2gHS8ZoCEdAqCYbSb6P83V9lChoBkdAcTW+pfhMrWgHS7BoCEdAqCZ2s7uDz3V9lChoBkdAT5SEzwc5sGgHS29oCEdAqCbmDFqBVnV9lChoBkdAcR0IiC8OC2gHS9poCEdAqCbjPldTpHV9lChoBkdAcNp6InBtUGgHS8FoCEdAqCb68pTdcnV9lChoBkdAcvJbYbsF+2gHS9hoCEdAqCcQlD4QBnV9lChoBkdAc8dJQLux8mgHS7BoCEdAqCcmLm6oVHV9lChoBkdAc4kSk0rK/2gHS8VoCEdAqCcsm4RVZXV9lChoBkdAcmMaiblRxmgHS7hoCEdAqCdMjHGS6nV9lChoBkdAcyU4qgAZKmgHS9JoCEdAqCepuQ6p53V9lChoBkdAcPtU5MlC1WgHS91oCEdAqCfM2eg+QnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1daabb880124920446cc64d11df36be4ac91e806156242786232b7482cb130c1
3
+ size 146631
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bd01a7a3c70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bd01a7a3d00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bd01a7a3d90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bd01a7a3e20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bd01a7a3eb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bd01a7a3f40>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bd01a7ac040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bd01a7ac0d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bd01a7ac160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bd01a7ac1f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bd01a7ac280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bd01a7ac310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bd01a79b0c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 3014656,
25
+ "_total_timesteps": 3000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1691067076280521037,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB8ZTw9lHG7lS+tO2C6ljw9GLG8J9OAPQAAgD8AAIA/M6fAPDjOwbuMTSo8YL6OPOIzE70wmHE9AACAPwAAgD9mGMM9xkyUP3XK3j5rpzm//Z0kPkeuhz4AAAAAAAAAAACuoTwmTQ0/V4MfPTFLBL95ja48ML6LPQAAAAAAAAAAJps8PpkmAT/XbQ++3E4Zv3f7cz5I+kC+AAAAAAAAAADaIdS9tigpPzfxDj7++wy/EjpEvocbOT4AAAAAAAAAAAAtjz17Ho66BtDENU1ChTCOEG06yqb7tAAAgD8AAIA/OkhRPuCyQD86exA+Hm0kv/uhvj6IRE+8AAAAAAAAAADAZ7s9ML2QPr0uhb33TgG/C3fgPfPTmb0AAAAAAAAAALO5Oj320Tq8rULivi/KgD2wthU9Lo4gvQAAgD8AAIA/ZpwGvMMRb7qY9Piy2iqFMBgigzl47Y0zAACAPwAAgD+a3Hc9FOYDP8vVar1eGgi/8K42PRl3wL0AAAAAAAAAADPH3TskeKw/uzHcPTdH974XVSC8xmWGvQAAAAAAAAAA5hoHPY9Wd7oPtgC51RDFNYS7wDpY4RQ4AACAPwAAAADm8X09w5U2ulpvhjkeX48zIpByu/5mnbgAAIA/AACAP9Ohbz4IUeU+vryqvn2oFb+RZXg+XxyavgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEOqWgOBlOMAWyUS8OMAXSUR0CoCBNj0+TvdX2UKGgGR0B0vXHggow3aAdL3WgIR0CoCDcvmHQAdX2UKGgGR0ByAWw+t8u0aAdLp2gIR0CoCDMdtEXtdX2UKGgGR0BxRynbZezEaAdLq2gIR0CoCHUkOZssdX2UKGgGR0Bwv2Hj6vaDaAdLvmgIR0CoCShsyi22dX2UKGgGR0BwxEztTkyUaAdLw2gIR0CoCS4+Sr5qdX2UKGgGR0ByAuL2pQ1raAdL2WgIR0CoCVCOmzjWdX2UKGgGR0BzEfwvxpcpaAdLyWgIR0CoCV/XoTwldX2UKGgGR0ByClhlUZNxaAdLyWgIR0CoCWaiKziTdX2UKGgGR0BziH9XLeQ/aAdNAgJoCEdAqAm8+HJtBXV9lChoBkdAcN09gWrOq2gHS8loCEdAqAnQ065oXnV9lChoBkdAc1KOTaCcw2gHS7loCEdAqAnqhpQDWHV9lChoBkdAcuB5u63AmGgHS9toCEdAqAocBfa6BnV9lChoBkdAcc0yXD3ueGgHS6RoCEdAqAoeUfPom3V9lChoBkdAcmgYJ3PiUGgHS9ZoCEdAqAo3b48EFHV9lChoBkdAcpMdnTRYzWgHS8loCEdAqApP7P6bfHV9lChoBkdAc/5QK8cuJ2gHS7BoCEdAqAp8oKD02HV9lChoBkdAcs2H446wMmgHS8doCEdAqAp7gqEvkHV9lChoBkdAcl8rRSgoPWgHS8NoCEdAqBwYeq7yx3V9lChoBkdAcltHBDXvpmgHS8FoCEdAqBw8Xxe9jHV9lChoBkdAcsMxkd3jdmgHS7xoCEdAqBxFyDIzWXV9lChoBkdAcKarmQr+YWgHS9FoCEdAqBxPio86m3V9lChoBkdAcB12xptaZGgHS8VoCEdAqBxiKpDNQnV9lChoBkdAc2tABT4tYmgHS7BoCEdAqByM/fO2RnV9lChoBkdAcncZfUnXumgHS7JoCEdAqByvfsNUfnV9lChoBkdAcLjllbu+iGgHS7ZoCEdAqB0rLhaTwHV9lChoBkdAcV0KWcBltmgHS8BoCEdAqB1XvhIe5nV9lChoBkdAc8FF8ohIOGgHS9VoCEdAqB1d0FKTS3V9lChoBkdAcmawdsBQvmgHTX8BaAhHQKgdl6gM+eR1fZQoaAZHQHEw9XT3IuJoB0vQaAhHQKgd49SuQp51fZQoaAZHQHG2tG7SRbNoB0vHaAhHQKgd/0lqrR11fZQoaAZHQGlQQsXizcBoB03oA2gIR0CoHgfTTfBOdX2UKGgGR0BzrSMHbAUMaAdL7mgIR0CoHjRjjJdTdX2UKGgGR0Bxs+TJQtSRaAdLsWgIR0CoHxGw7kn1dX2UKGgGR0BykJ+1Bt1qaAdLt2gIR0CoHyOdoWYXdX2UKGgGR0BuBH1+RYA9aAdLv2gIR0CoHyTfixVydX2UKGgGR0Bxpo3Kji4saAdLt2gIR0CoH0biIciodX2UKGgGR0BxiW3rleWwaAdLvGgIR0CoH0d3KSxJdX2UKGgGR0Byt3Zwn6VMaAdNMgFoCEdAqB+SXD3ueHV9lChoBkdAciS1CgK4QWgHS8xoCEdAqB+cZ3s5XHV9lChoBkdAcymjd56dD2gHS81oCEdAqB+2TibUgHV9lChoBkdAcMNh6Skj5mgHS75oCEdAqB/h26kIonV9lChoBkdAcTW9Vmz0H2gHS7doCEdAqB/uvt+kQHV9lChoBkdAcxkRs/IKdGgHS8toCEdAqCAcrNGEwnV9lChoBkdAcwkbkfcN6WgHS7toCEdAqCAaBVdX1nV9lChoBkdAcWql/6O5rmgHS7NoCEdAqCBsMoc7yXV9lChoBkdAcWhnZCfHxWgHS8FoCEdAqCBrN2TxG3V9lChoBkdAb53y1eBxxWgHS79oCEdAqCBrCvX9SHV9lChoBkdAc33ICU5dW2gHS8loCEdAqCBvK0UoKHV9lChoBkdAH6cxCY1HfGgHS2JoCEdAqCCKiyprDnV9lChoBkdAcjNPPcBU72gHS61oCEdAqCDplFtsN3V9lChoBkdAcXdifQKKHmgHS7loCEdAqCD+Xu3MIXV9lChoBkdAclnnFo+OfmgHS7NoCEdAqCER42S+xnV9lChoBkdAcZC+u/1xsGgHS8JoCEdAqCE5nnMdLnV9lChoBkdAcZkgmJFb3WgHS6RoCEdAqCFadYnv2HV9lChoBkdAcpV8cdYGMWgHS+loCEdAqCGNdTo+wHV9lChoBkdAc1FAKOT7mGgHS65oCEdAqCGoxagVXXV9lChoBkdAc5DdDpkf92gHS8xoCEdAqCGuvQnhKnV9lChoBkdASYfCdjG1hWgHS35oCEdAqCG41BMSK3V9lChoBkdAcrHW0qpcX2gHS7doCEdAqCHNjTa0yHV9lChoBkdAcwbndweeWmgHS9doCEdAqCJMVafSQnV9lChoBkdAc2kMm4RVZWgHS8NoCEdAqCJt3dKujnV9lChoBkdAc2q8J2MbWGgHS8FoCEdAqCJrCgsbvXV9lChoBkdAcW7yDIzWPWgHS8RoCEdAqCJvluFYdXV9lChoBkdAc4qGQ0XP7mgHS9BoCEdAqCKuax5cDHV9lChoBkdAcn/43FUADWgHS/9oCEdAqCK5B1LamHV9lChoBkdAcWjp5eJHiGgHS7doCEdAqCLRgRbr1XV9lChoBkdAcEEUkOZssWgHS8NoCEdAqCMERvm5lXV9lChoBkdAclgffoA4oGgHS85oCEdAqCM0PQOWjXV9lChoBkdAcZ7VuaWonGgHS79oCEdAqCM0tXgccXV9lChoBkdAbocGD+R5kmgHS8doCEdAqCNnWDpTuXV9lChoBkdAcvVkrwvxpmgHS7doCEdAqCNsep4r0HV9lChoBkdAcerX2ugYg2gHS7loCEdAqCOTOcDr7nV9lChoBkdAcTiYF7laKWgHS8xoCEdAqCO/BxgiNnV9lChoBkdAct7px3mmtWgHS8ZoCEdAqCPVQQ+UyHV9lChoBkdAcWuWoWHk92gHS7NoCEdAqCRVMbm2cHV9lChoBkdAc876Lfk3j2gHS8hoCEdAqCRwElme2HV9lChoBkdAb6jyYG+sYGgHS8VoCEdAqCSHuJDVpnV9lChoBkdAcl7h5xBE8mgHS9RoCEdAqCS0mhM8HXV9lChoBkdAcqO+I/JNkGgHS8NoCEdAqCTY2jwhGHV9lChoBkdAcEk1lGwzL2gHS9poCEdAqCUSNlyzX3V9lChoBkdAcfFIS13MZGgHS61oCEdAqCUksvqTr3V9lChoBkdAcsp8Jlar3mgHS9loCEdAqCU30VafSXV9lChoBkdAcg5JpnHvMWgHS8ZoCEdAqCU4caOxS3V9lChoBkdAc/vSZ0CA+mgHS9BoCEdAqCWJh4MWoHV9lChoBkdAcjWVwxWT5mgHS7BoCEdAqCWUNMGorHV9lChoBkdAcE074BV+7WgHS8NoCEdAqCWdd7fHgnV9lChoBkdAcVYb9ZRsM2gHS9NoCEdAqCXQY51eSnV9lChoBkdAcRkI1cdHUmgHS71oCEdAqCXo7xNIsnV9lChoBkdAdHQiQDFId2gHS8ZoCEdAqCYbSb6P83V9lChoBkdAcTW+pfhMrWgHS7BoCEdAqCZ2s7uDz3V9lChoBkdAT5SEzwc5sGgHS29oCEdAqCbmDFqBVnV9lChoBkdAcR0IiC8OC2gHS9poCEdAqCbjPldTpHV9lChoBkdAcNp6InBtUGgHS8FoCEdAqCb68pTdcnV9lChoBkdAcvJbYbsF+2gHS9hoCEdAqCcQlD4QBnV9lChoBkdAc8dJQLux8mgHS7BoCEdAqCcmLm6oVHV9lChoBkdAc4kSk0rK/2gHS8VoCEdAqCcsm4RVZXV9lChoBkdAcmMaiblRxmgHS7hoCEdAqCdMjHGS6nV9lChoBkdAcyU4qgAZKmgHS9JoCEdAqCepuQ6p53V9lChoBkdAcPtU5MlC1WgHS91oCEdAqCfM2eg+QnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 1472,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baa7c5922d3f38af3396b8296261b680fd82de2ca170b5c88d7b6ae4610fb956
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:775a4fdb76a400b4c2c6ca742396e48db6f7e163995abde5c03eb59949eefb06
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (159 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 288.24254079409815, "std_reward": 22.17950237485194, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-03T13:45:18.068152"}