mherrador commited on
Commit
5ac52a0
·
verified ·
1 Parent(s): bc3bebf

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -39
app.py DELETED
@@ -1,39 +0,0 @@
1
- import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
3
- import torch
4
-
5
- # Load your model and tokenizer using the adapter weights
6
- model_name = "mherrador/CE-5.0" # Replace with your actual model name
7
- bnb_config = BitsAndBytesConfig(
8
- load_in_4bit=True,
9
- bnb_4bit_use_double_quant=True,
10
- bnb_4bit_quant_type="nf4",
11
- bnb_4bit_compute_dtype=torch.bfloat16,
12
- )
13
-
14
- model = AutoModelForCausalLM.from_pretrained(
15
- model_name,
16
- quantization_config=bnb_config,
17
- device_map="auto",
18
- trust_remote_code=True,
19
- )
20
- tokenizer = AutoTokenizer.from_pretrained(model_name)
21
-
22
- # Function to generate recommendations
23
- def generate_recommendations(input_text):
24
- inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
25
- outputs = model.generate(**inputs, max_new_tokens=128)
26
- recommendations = tokenizer.batch_decode(outputs)[0]
27
- return recommendations
28
-
29
- # Create the Gradio interface
30
- iface = gr.Interface(
31
- fn=generate_recommendations,
32
- inputs=gr.Textbox(lines=5, placeholder="Enter your questions here..."),
33
- outputs=gr.Textbox(lines=10),
34
- title="Circular Economy Recommender",
35
- description="Enter your questions about circular economy practices to get recommendations.",
36
- )
37
-
38
- # Launch the interface
39
- iface.launch()