File size: 1,829 Bytes
1361f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: cc
base_model: joelniklaus/legal-swiss-roberta-large
tags:
- generated_from_trainer
datasets:
- swiss_judgment_prediction
metrics:
- accuracy
model-index:
- name: my_fine_tuned_model
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: swiss_judgment_prediction
      type: swiss_judgment_prediction
      config: de
      split: test
      args: de
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.831362467866324
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_fine_tuned_model

This model is a fine-tuned version of [joelniklaus/legal-swiss-roberta-large](https://huggingface.co/joelniklaus/legal-swiss-roberta-large) on the swiss_judgment_prediction dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4358
- Accuracy: 0.8314

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4692        | 1.0   | 2217 | 0.4277          | 0.8305   |
| 0.4261        | 2.0   | 4434 | 0.4358          | 0.8314   |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1