|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
class BadNet(nn.Module): |
|
|
|
|
|
def __init__(self, 3072,10): |
|
super().__init__() |
|
|
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(in_channels=input_channels, out_channels=16, kernel_size=5, stride=1), |
|
nn.ReLU(), |
|
nn.AvgPool2d(kernel_size=2, stride=2) |
|
) |
|
|
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1), |
|
nn.ReLU(), |
|
nn.AvgPool2d(kernel_size=2, stride=2) |
|
) |
|
fc1_input_features = 800 if input_channels == 3 else 512 |
|
self.fc1 = nn.Sequential( |
|
nn.Linear(in_features=fc1_input_features, out_features=512), |
|
nn.ReLU() |
|
) |
|
self.fc2 = nn.Sequential( |
|
nn.Linear(in_features=512, out_features=output_num), |
|
nn.Softmax(dim=-1) |
|
) |
|
self.dropout = nn.Dropout(p=.5) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
|
|
x = x.view(x.size(0), -1) |
|
x = self.fc1(x) |
|
x = self.fc2(x) |
|
return x |
|
|