amueller's picture
Upload folder using huggingface_hub
dadf4bf verified
"""
Copy of the existing SubspaceFeaturizer implementation for submission.
This file provides the same SubspaceFeaturizer functionality in a self-contained format.
"""
import torch
import torch.nn as nn
import pyvene as pv
from CausalAbstraction.model_units.model_units import Featurizer
class SubspaceFeaturizerModuleCopy(torch.nn.Module):
def __init__(self, rotate_layer):
super().__init__()
self.rotate = rotate_layer
def forward(self, x):
r = self.rotate.weight.T
f = x.to(r.dtype) @ r.T
error = x - (f @ r).to(x.dtype)
return f, error
class SubspaceInverseFeaturizerModuleCopy(torch.nn.Module):
def __init__(self, rotate_layer):
super().__init__()
self.rotate = rotate_layer
def forward(self, f, error):
r = self.rotate.weight.T
return (f.to(r.dtype) @ r).to(f.dtype) + error.to(f.dtype)
class SubspaceFeaturizerCopy(Featurizer):
def __init__(self, shape=None, rotation_subspace=None, trainable=True, id="subspace"):
assert shape is not None or rotation_subspace is not None, "Either shape or rotation_subspace must be provided."
if shape is not None:
self.rotate = pv.models.layers.LowRankRotateLayer(*shape, init_orth=True)
elif rotation_subspace is not None:
shape = rotation_subspace.shape
self.rotate = pv.models.layers.LowRankRotateLayer(*shape, init_orth=False)
self.rotate.weight.data.copy_(rotation_subspace)
self.rotate = torch.nn.utils.parametrizations.orthogonal(self.rotate)
if not trainable:
self.rotate.requires_grad_(False)
# Create module-based featurizer and inverse_featurizer
featurizer = SubspaceFeaturizerModuleCopy(self.rotate)
inverse_featurizer = SubspaceInverseFeaturizerModuleCopy(self.rotate)
super().__init__(featurizer, inverse_featurizer, n_features=self.rotate.weight.shape[1], id=id)