|
""" |
|
Copy of the existing SubspaceFeaturizer implementation for submission. |
|
This file provides the same SubspaceFeaturizer functionality in a self-contained format. |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import pyvene as pv |
|
from CausalAbstraction.model_units.model_units import Featurizer |
|
|
|
|
|
class SubspaceFeaturizerModuleCopy(torch.nn.Module): |
|
def __init__(self, rotate_layer): |
|
super().__init__() |
|
self.rotate = rotate_layer |
|
|
|
def forward(self, x): |
|
r = self.rotate.weight.T |
|
f = x.to(r.dtype) @ r.T |
|
error = x - (f @ r).to(x.dtype) |
|
return f, error |
|
|
|
|
|
class SubspaceInverseFeaturizerModuleCopy(torch.nn.Module): |
|
def __init__(self, rotate_layer): |
|
super().__init__() |
|
self.rotate = rotate_layer |
|
|
|
def forward(self, f, error): |
|
r = self.rotate.weight.T |
|
return (f.to(r.dtype) @ r).to(f.dtype) + error.to(f.dtype) |
|
|
|
|
|
class SubspaceFeaturizerCopy(Featurizer): |
|
def __init__(self, shape=None, rotation_subspace=None, trainable=True, id="subspace"): |
|
assert shape is not None or rotation_subspace is not None, "Either shape or rotation_subspace must be provided." |
|
if shape is not None: |
|
self.rotate = pv.models.layers.LowRankRotateLayer(*shape, init_orth=True) |
|
elif rotation_subspace is not None: |
|
shape = rotation_subspace.shape |
|
self.rotate = pv.models.layers.LowRankRotateLayer(*shape, init_orth=False) |
|
self.rotate.weight.data.copy_(rotation_subspace) |
|
self.rotate = torch.nn.utils.parametrizations.orthogonal(self.rotate) |
|
|
|
if not trainable: |
|
self.rotate.requires_grad_(False) |
|
|
|
|
|
featurizer = SubspaceFeaturizerModuleCopy(self.rotate) |
|
inverse_featurizer = SubspaceInverseFeaturizerModuleCopy(self.rotate) |
|
|
|
super().__init__(featurizer, inverse_featurizer, n_features=self.rotate.weight.shape[1], id=id) |